

A Practical Framework for Privacy-Preserving NoSQL Databases

36th IEEE International Symposium on Reliable Distributed Systems Hong Kong, 27th September 2017

Ricardo Macedo¹, João Paulo¹, Rogério Pontes¹, Bernardo Portela², Tiago Oliveira², Miguel Matos³, Rui Oliveira¹

¹ High Assurance Software Lab, INESC TEC and U. Minho, Portugal ² High Assurance Software Lab, INESC TEC and FCUP, Portugal ³ INESC ID/IST, U. Lisboa, Portugal

Cloud Databases

- Multiple applications and online services are used in a daily basis
- Massive amounts of data are stored in databases
- Cloud storage services became the choice for millions of users and enterprises
 - Flexible storage capacity and elevated computing power
 - Costless acquisition and administration of a private infrastructure
 - High efficiency, scalability and ease of use

Challenges and Problems

- Migration of data control to a third party
- Sensitive data exposed through privacy and security failures
- Reluctance on cloud services adoption

Challenges and Problems

- Migration of data control to a third party
- Sensitive data exposed through privacy and security failures
- Reluctance on cloud services adoption

What can be done?

Scheme	Construction	Properties	Operations	
Standard Encryption	AES-128 CBC w/o IV	None	Insertions	
Deterministic Encryption	AES-128 CBC w/ IV	Equality	Reads, equality filters	
Order-Preserving Encryption	Boldyreva et al. '09	Equality, Order	Searches, equality and order filters	

Allowed Operations

SRDS '17

Current Solutions

Current Solutions

7

Current Solutions

Contributions

- SafeNoSQL, a modular and extensible framework for NoSQL databases
 - Secure computation over sensitive data
 - Configurable security to tailor different system requirements
 - Generic to most of NoSQL Key-Value Stores
 - Extensible to several encryption schemes
 - Encryption schemes are exchangeable

Hong Kong, September 27th

Hong Kong, September 27th

Hong Kong, September 27th

Apache HBase

Apache HBase

HBase Table

	Name	e (CF)	Contacts (CF)					
Key	First (CQ)	Last (CQ)	Phone Number(CQ)	Mobile (CQ)	Email (CQ)			
1627	John	Doe	(800) 609-2233	(800) 420-1372	jdoe@gmail.com			
1821	Anna	Far	(202) 513-4280	(202) 698-3281	far_a@gmail.com			

Key - Row Key; CF - Column Family; CQ - Column Qualifier

SafeNoSQL: Implementation

SafeNoSQL: Implementation

Hong Kong, September 27th

SafeNoSQL: Implementation

Dowl	Physician	Appoin	tments					
Rowney	PhysicianID	Туре	Date					
12345	x7f199fb6da	xfe6477f385	x360e6ef47d					
57810	x6c6d5cd2bf	x9aea3ee119	x369e3e9265					
83921	x67ddaf772b	xbe5275d5ad	x3533b6392d					

Experimental Evaluation

- Micro- and macro-experiments
- 5 HBase nodes and a single client
- Database pre-populated with 10⁶ rows
- YCSB as benchmarking platform
- 5 executions for each workload
- 20 minutes per execution

QEF - Qualifier Equality Filter QRF - Qualifier Range Filter

Workload	Insert	Update	RMW	Read	Scan	QEF	QRF
 A	-	50%	-	50%	-	-	-
В	-	5%	-	95%	-	-	-
E ₁	5%	-	-		75%	10%	10%
E_2	5%	-	-	-	75%	20%	-
F		-	50%	50%	-	-	-
G	50%	-	15%	15%	-	10%	10%
н	10%	-	45%	30%	-	15%	-

Experimental Evaluation

- Micro- and macro-experiments
- 5 HBase nodes and a single client
- Database pre-populated with 10⁶ rows
- YCSB as benchmarking platform
- 5 executions for each workload
- 20 minutes per execution

QEF - Qualifier Equality Filter QRF - Qualifier Range Filter

	Wo	orkload	Insert	Update	RMW	Read	Scan	QEF	QRF
_		A	_	50%	-	50%	-	-	-
-		В	-	5%	-	95%	-	-	-
	_	E ₁	5%	-	-		75%	10%	10%
		E_2	5%	-	-	-	75%	20%	-
		F		_	50%	50%	-	-	-
		G	50%	-	15%	15%	-	10%	10%
		H	10%	-	45%	30%	-	15%	-
		1							

Experimental Evaluation

- Micro- and macro-experiments
- 5 HBase nodes and a single client
- Database pre-populated with 10⁶ rows
- YCSB as benchmarking platform
- 5 executions for each workload
- 20 minutes per execution

QEF - Qualifier Equality Filter QRF - Qualifier Range Filter

-	Workload	orkload Insert		Update RMW F		Read Scan		QRF
-	А	_	50%	-	50%	-	-	-
	В	-	5%	-	95%	-	-	-
	E ₁	5%	-	-		75%	10%	10%
	E_2	5%	-	-	-	75%	20%	-
	F	-	-	50%	50%	-	-	-
	G	50%	-	15%	15%	-	10%	10%
	н	10%		45%	30%	-	15%	-
		(

Experimental Evaluation: Database Schemas

Personal Information about Hospital Patients

Key [−]	Identification						Cont	Obs.	App.	
	MainID	Surname	Name	Birth	Nat.	C. ID	Address	Contact	Obs.	[1-*]
8	64	64	64	14	4	9	256	13	1024	8
DET	DET	STD	STD	STD	STD	STD	STD	STD	STD	STD

Hospital Appointments

Key	Physician	Patient		Appointm	Institution			
	PhysicianID	PatientID	Date	Date-STD	Туре	Obs.	Name	Address
8	16	16	14	14	64	1024	128	256
DET	DET	STD	OPE	STD	STD	STD	STD	STD

Experimental Evaluation: Micro Tests

- Micro-experiments were performed for the Appointments' schema
- Only row-key encryption
- DET scheme reveals a performance loss less than 26%
- OPE operations' performance are restricted by the cipher's performance

Experimental Evaluation: Micro Tests

- Micro-experiments were performed for the Appointments' schema
- Only row-key encryption
- DET scheme reveals a performance loss less than 26%
- OPE operations' performance are restricted by the cipher's performance

Experimental Evaluation: Micro Tests

- Micro-experiments were performed for the Appointments' schema
- Only row-key encryption
- DET scheme reveals a performance loss less than 26%
- OPE operations' performance are restricted by the cipher's performance

Experimental Evaluation: Macro Tests

- Average performance loss
 - 14.03% for the Appointments schema
 - 12.29% for Patients schema
- Appropriate trade-offs balancing

Conclusion

- Strict combination of encryption schemes cannot fulfill the user's requirements
- **SafeNoSQL**, a privacy-preserving framework for NoSQL databases
 - High modularity and flexibility
 - Generic to most of NoSQL Key-Value Stores
 - Extensible to several encryption schemes
 - Performance overhead of 15% (in average)

Future Work

- Integration with more encryption schemes
- Support of more NoSQL databases
- Encryption keys management and access control
- Query planner and schema designer

A Practical Framework for Privacy-Preserving NoSQL Databases

36th IEEE International Symposium on Reliable Distributed Systems Hong Kong, 27th September 2017

Ricardo Macedo¹, João Paulo¹, Rogério Pontes¹, Bernardo Portela², Tiago Oliveira², Miguel Matos³, Rui Oliveira¹

¹ High Assurance Software Lab, INESC TEC and U. Minho, Portugal ² High Assurance Software Lab, INESC TEC and FCUP, Portugal ³ INESC ID/IST, U. Lisboa, Portugal

