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Abstract—Cloud infrastructures provide database services as
cost-efficient and scalable solutions for storing and processing
large amounts of data. To maximize performance, these services
require users to trust sensitive information to the cloud provider,
which raises privacy and legal concerns. This represents a major
obstacle to the adoption of the cloud computing paradigm.

Recent work addressed this issue by extending databases
to compute over encrypted data. However, these approaches
usually support a single and strict combination of cryptographic
techniques invariably making them application specific. To assess
and broaden the applicability of cryptographic techniques in
secure cloud storage and processing, these techniques need to
be thoroughly evaluated in a modular and configurable database
environment. This is even more noticeable for NoSQL data stores
where data privacy is still mostly overlooked.

In this paper, we present a generic NoSQL framework and a set
of libraries supporting data processing cryptographic techniques
that can be used with existing NoSQL engines and composed
to meet the privacy and performance requirements of different
applications. This is achieved through a modular and extensible
design that enables data processing over multiple cryptographic
techniques applied on the same database. For each technique, we
provide an overview of its security model, along with an extensive
set of experiments. The framework is evaluated with the YCSB
benchmark, where we assess the practicality and performance
tradeoffs for different combinations of cryptographic techniques.
The results for a set of macro experiments show that the average
overhead in NoSQL operations performance is below 15%, when
comparing our system with a baseline database without privacy
guarantees.

I. INTRODUCTION

Nowadays, cloud computing is an ubiquitous technology
capable of satisfying the most demanding storage and pro-
cessing workloads [1]. Its benefits are well known: virtual
infinite resources, fine-grained resource allocation, no up-front
infrastructure costs, and constant access from anywhere at
any time. Outsourcing databases to cloud providers became
a logical step for many IT organizations to reduce costs and
provide a good quality of service.

The cloud computing model assumes a level of trust on the
provider that is not realistic for many applications. Several
security concerns are raised when users want to offload sensitive
data to a cloud provider. Once data is outsourced to the
cloud, the users’ control over that data is lost. This is an
issue even if one could trust the cloud provider not break
confidentiality, as recent reports have shown that cloud services
often have security flaws that can result in the leakage of

sensitive information [2]. These privacy issues justify why many
enterprises holding sensitive data are reluctant to adopt the
cloud paradigm. Information may be sensitive for a number
of reasons, e.g., if it is personal data, part of a business’
competitive advantage or even due to regulations designed
to ensure privacy or confidentiality, such as the novel European
General Data Protection Regulation (GDPR)1.

The protection of data is generally achieved using efficient
encryption standards [3]. However, these approaches inherently
prevent any sort of computation to be performed over encrypted
data. This has motivated research and development of crypto-
graphic techniques that provide a restricted set of computations
to be performed over encrypted data, such as equality and
range queries [4, 5]. The development of secure databases can
thus be achieved in a variety of different ways, with varying
levels of performance and security trade-offs.

Finding the cryptographic mechanisms best suited for the
functionality, performance and security requirements of specific
applications is a non-trivial task. On one hand, strong security
can lead to a system that is neither available nor scalable.
On the other hand, disregarding privacy towards performance
can lead to unmet security requirements preventing real-world
deployment. The careful selection of cryptographic techniques
is, therefore, highly dependent on the expected application
workload, and on the limitations imposed to sensitive data.
This task gets increasingly complex once one considers that
real-world databases store different types of information with
(potentially widely) varying levels of privacy requirements.2

A great amount of research is centered around privacy-aware
SQL databases as these have for many years been the standard
systems for applications to store and query data [6, 7]. More
recently, NoSQL databases have emerged to address the high-
scalability and availability needs of some applications, which
can afford relaxed data consistency guarantees [8, 9]. NoSQL
databases have a simplified API which has been left unprotected
and is subpar to the existing security guarantees of SQL queries.
As a matter of fact, research on secure NoSQL databases is still
poorly addressed in the literature [10, 11]. This paper aims to

1http://www.eugdpr.org.
2According to GDPR, users’ personal information (e.g., name, date of birth,

citizen id) must be encrypted while information generated by the application
that does not identify the users, does not need the same level of protection.

http://www.eugdpr.org


make NoSQL databases up-to-date to current security standards
and guarantees of SQL databases.

Moreover, current secure SQL and NoSQL database solutions
usually support a single and strict combination of cryptographic
techniques invariably making them application specific. Our
contributions in this paper stem from the idea that the design of
privacy-preserving databases should be supported by a modular
and extensible architecture, enabling a granular specification
of functional and security requirements. This would allow for
cloud developers to devise highly scalable NoSQL databases
with security mechanisms tailored to the application at hand,
which in turn maximizes system performance and throughput,
while ensuring an adequate level of privacy for the system
to be securely deployed on the cloud. In summary, our main
contributions are:
• SAFENOSQL, a generic framework supporting existing

NoSQL engines able to meet the privacy and performance
requirements of different applications. This framework
has a modular and extensible design that enables data
processing over multiple cryptographic techniques applied
on the same database schema.

• A SAFENOSQL prototype based on Apache HBase,
along with a set of libraries implementing different data
processing cryptographic techniques.

• An extensive evaluation of the prototype with micro
and macro experiments under different representative
application scenarios. The results of macro experiments
show that the average overhead in NoSQL operations
performance is less than 15% with respect to an HBase
deployment without privacy-preserving guarantees.

The paper is structured as follows: Section II presents the
relevant related work of privacy-aware databases. Section III
describes the cryptographic schemes to be applied on the
prototype and the security models that must be considered.
The modular and extensible architecture for privacy-aware
NoSQL databases SAFENOSQL is presented in Section IV.
The implementation of a prototype that follows the architecture
is then presented in Section V. Section VI presents an extensive
experimental evaluation using realistic workloads. The paper
concludes in Section VII with relevant observations and future
work.

II. RELATED WORK

Several approaches have been proposed to address the gap in
NoSQL privacy-preserving databases. In the BigSecret system,
stored data is protected with standard encryption, while the
indexes are encoded using techniques that allow comparisons
(pseudo-random functions) and range queries (order-preserving
partitioning) [10]. Yuan et al. employ algorithms of searchable
encryption to build a privacy-preserving key-value store on
top of the Redis database [11]. The values are protected
with symmetric encryption and the keys are secured with
pseudo-random functions. However, this approach provides
a restricted set of features and a low modularity, since to
provide more computation capabilities, the key-value pair
must be rewritten in order to append to the key more

information about the corresponding value. As a distinct
solution, SafeRegions combines secret sharing and multi-
party computation to perform secure NoSQL queries on three
independent and untrusted HBase clusters [12]. Furthermore,
this solution provides simultaneously secure computation over
the stored values and security guarantees similar to standard
encryption. Finally, in Arx a variant of order-preserving
encryption with stronger security guarantees is proposed [13].
NoSQL queries are rewritten by a proxy at the trusted premises
and a backend component deployed at the untrusted premises
is used to perform computation over encrypted data. Messages
exchanged between the proxy and backend component are done
with a SQL dialect which requires translating queries to NoSQL
language when the system interacts with NoSQL applications
or NoSQL backend components. All previous solutions have
been designed considering a specific, and hence restricted, set
of data protection techniques. The main advantage of our work
is that it provides a modular and flexible design where these
and other techniques, with varying performance and security
guarantees, can easily be supported.

In a different context, yet relevant for this paper, the design of
secure databases has also been explored in the SQL paradigm.
In CryptDB, a client rewrites SQL queries so that the database
engine can execute them over protected data at untrusted envi-
ronments [6]. It leverages different layered security schemes,
allowing for the execution of equality checking and range
queries, and generic sums and multiplications over encrypted
data. A different approach is presented in Monomi, a CryptDB-
based framework, able to perform secure data analytics by
splitting the queries execution between the server and the
client, allowing complex SQL queries to be performed [7].
An alternative solution proposed by the L-EncDB system
ensures sensitive data protection while preserving the same
length, format and primitive type through a set of format-
preserving encryption techniques with deterministic properties,
alongside an order-preserving encryption scheme to support
most of the SQL queries [14]. In Xiang et al., a secret sharing
scheme is combined with order-preserving encryption to protect
sensitive information stored and processed at the multiple
untrusted cloud providers [15, 16]. It was also shown that
it is possible to provide a SQL database, with a restricted
range of supported queries, by relying solely on secret sharing
and multi-party computation over three untrusted remote
backends [17, 18]. Despite being a fundamentally different
paradigm, these monolithic secure SQL database designs show
the need of having a generic, flexible and modular framework
solution able to combine different encryption mechanisms.

Another approach towards data privacy in the context of
relational databases is to perform "at rest" data encryption. In
this setting the cryptographic keys used to encrypt data are
stored on trusted infrastructures with security measures that
prevent attackers from corrupting the system and obtaining
the keys [19, 20]. However, since the security mechanisms
disallow most computations, some queries require the key to
be given to the untrusted server, for decrypting information
and responding to queries. Contrary to our deployment, where



the key remains within trusted premises at all times, this model
has the disadvantage that if the cloud is corrupted while one
of these queries is being processed at the untrusted server’s
memory, the attacker can retrieve the associated sensitive data.

III. SECURITY

When considering various cryptographic techniques, the
differences in privacy guarantees are observable in their
respective security models. A more functionally restrictive
encryption algorithm might ensure indistinguishability against a
powerful adversary, while a different scheme allowing for some
operations to be performed over encrypted data has to consider
more limited adversaries. Throughout this work we explore,
implement and analyse three different techniques for ensuring
privacy-preserving computation that are widely used in different
contexts, and that can be applicable towards enabling NoSQL
processing over encrypted data. In this section, we describe
each cryptographic technique, as well as the privacy guarantees
and performance impact of the respective instantiations.

For clarity in presentation throughout the paper, we briefly
establish a clear distinction between what we will refer to
as primitives and implementations. A cryptographic primitive
is a high-level description of a fixed set of algorithms and a
security model defining the context where such a technique
can be considered secure. A cryptographic implementation
is an instantiation of a given primitive, typically a library
that provides the required algorithms, and ensures the security
properties enforced by it.

An encryption scheme generally consists in a triple of Proba-
bilistic Polynomial Time (PPT) algorithms (Gen,Enc,Dec). On
input 1λ, where λ is the security parameter, the key generation
algorithm Gen returns a fresh key k. Upon input key k and
message m, the encryption algorithm Enc returns a ciphertext
m′. Upon input key k and ciphertext m′, the decryption
algorithm Dec returns the original message m. We require
that m = Dec(k,Enc(k,m)) for all λ ∈ N, all k ∈ Gen(1λ)
and all m. We will now refine this definition to describe several
primitives, and refer to our respective implementations.

A. Standard encryption

The encryption scheme considers a probabilistic encryption
algorithm Enc. Our respective implementation follows the
Advanced Encryption Standard [3], whose security guarantees
adhere to the standard notions of semantic security definitions
detailed in [21]. This entails a considerably robust level of
security, meaning it is infeasible for a computationally bounded
adversary to derive significant information about a message
from the associated ciphertext.

Classical cryptographic algorithms ensuring semantic secu-
rity are not designed to produce ciphertexts over which one
can perform meaningful computations. The applicability of
these techniques is, therefore, limited to the protection of data
in scenarios where no operations are to be performed over it,
such as data transmission or storage. For instance, retrieving a
value encrypted in this fashion would require a full database

retrieval and subsequent decryption, which is unfeasible for
any realistic database deployment.

B. Deterministic encryption
The encryption scheme considers a deterministic encryp-

tion algorithm Enc, and must ensure that m1 = m2 ⇒
Enc(k,m1) = Enc(k,m2) for all λ ∈ N, all k ∈ Gen(1λ)
and all m1,m2. The implementation of our scheme is achieved
by adapting the Advanced Encryption Standard [3] to behave
deterministically. The security guarantees of deterministic
encryption schemes are formalized in [22], and somewhat
follow the semantic security definitions in [21] with the caveat
that the messages to be encrypted must have high min entropy
conditioned on values of the other messages. One application
example that fits this requirement would be the encryption of
social security numbers, which likely share prefixes, but are
otherwise uncorrelated.

From the properties of deterministic algorithms, ciphertexts
can be compared without requiring the associated key, which
also entails that the set of ciphertexts referring to the same data
are known to the data holder as well. This approach of revealing
duplicates to obtain functionality benefits is commonly used in
secure storage systems relying on it for data deduplication [23].
In this setting, obtaining an encrypted value is trivial, but
range querying would again require a full database retrieval
and decryption, since equality does not suffice.

C. Order-preserving encryption
The encryption scheme considers a deterministic encryp-

tion algorithm Enc, and must ensure that m1 > m2 ⇒
Enc(k,m1) > Enc(k,m2) for all λ ∈ N, all k ∈ Gen(1λ) and
all m1,m2. We follow the scheme proposed in [24]. Security
guarantees of order-preserving encryption are formalized and
discussed in [5]. The security of an OPE scheme is described
via two main notions: window one-wayness, the expected
margin of error for a server holding an OPE-encrypted database
to extract original values, and window distance one-wayness,
the expected margin of error for a server holding an OPE-
encrypted database to extract distances between original values.
Contrary to previous definitions, the security of OPE does not
ensure strong security properties such as indistinguishability.

In addition to equality, the order-revealing nature of these
schemes allows for comparisons to be performed over encrypted
data. This is also the factor that enables inference attacks to be
performed over data encrypted with OPE, where knowledge
of data distribution can lead to high success rates for sensitive
data extraction [25]. As such, the applicability of OPE should
follow from these security limitations, for usage on high entropy
attributes such as sequential identifiers, or for handling data
with low sensitivity, where revealing partial information about
the original values is not problematic. This considerable security
downgrade has the significant advantage of allowing for equality
and range queries to be executed efficiently on the server side.

IV. ARCHITECTURE

The proposed architecture for SAFENOSQL framework aims
to be generic, in order to be compatible with most of the
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Fig. 2: Architecture of SAFENOSQL.

existing key-value based NoSQL databases [8, 9]. For this
reason, and as depicted in Figure 1, we assume a typical
logical table view where each key-value can be seen as a row
indexed by a key. A key is associated with several values
organized in different columns. In this context, the following
set of operations is supported in our framework:
• Put. A new key-value pair is inserted or updated if the

corresponding key already exists.
• Get. The key-value for a specific key is read.
• Delete. The key-value for a specific key is deleted.
• Scan. A range of key-value pairs is read.
• Filter. Search for one or more key-value pairs where a

specific column matches a desired value.
Figure 2 shows the proposed architecture for SAFENOSQL.

We consider two deployment environments for databases over
which we design our framework: trusted site and untrusted
site. The trusted site is the point of access of the database
clients. This can either be independent personal computers or
an on-premise trusted cluster controlled by the data owner.3

The untrusted site is where the bulk of data processing is made.
One or more cloud providers can play this role, where data is
not controlled by the data owner at all times, and where the
existence of security vulnerabilities must be considered.

A. CryptoWorkers and CryptoBoxes

Our framework extends NoSQL databases security mecha-
nisms with CryptoWorkers, which abstract the integration of

3A trusted infrastructure is achieved via strong access control and security
policies, which is necessary for the reliability of cryptographic mechanisms
mentioned in the paper.

cryptographic schemes on the system. CryptoWorkers reside
on the trusted and untrusted site, and provide a privacy-aware
NoSQL API for simple integration with NoSQL database
architectures. Each database request that is handled by a Cryp-
toWorker is converted into an operation with the same semantics
but with additional security guarantees. Depending on the
defined security guarantee and on the cryptographic primitive
implementation, requests will be translated differently. However,
the translation process is abstracted in three operations:
• Encode - is executed on the trusted site, where a query

is protected before transmission. For instance, encoding a
Put with standard encryption will simply require for the
data to be encrypted before being sent to the untrusted site.
However, complex mechanisms for obfuscation can also
be implemented, where an encoding of a Put operation
translates into several encoded insertion requests.

• Process - is executed on the untrusted site, where an
encoded query is processed, and some data is returned.
This is trivial for some techniques, but this operation
enables our framework to support additional cryptographic
mechanisms that require computation over ciphertext.

• Decode - is executed on the trusted site, where a plaintext
query response is generated from the ciphertext NoSQL
database result.

These operations are supported by modular and easily
interchangeable components, CryptoBoxes. These components
resort to libraries containing standalone cryptographic imple-
mentations. More concretely, supporting a specific security
technique in our architecture requires a developer to provide
an implementation of a CryptoBox, where the most granular
cryptographic operations will be performed, and an implemen-
tation of a CryptoWorker, which will have NoSQL context, and
employ the CryptoBox to appropriately capture the NoSQL
API. This gives us modularity on two different levels: i.)
on the security primitive, by allowing extensible deployment
configurations with different data sets protected with different
techniques (CryptoBoxes), co-existing within the same system,
and ii.) on the level of the actual implementation, where if
one is interested in upgrading an existing technique with some
state-of-the-art advancement, this can be achieved by simply
exchanging the implementation on the CryptoBox level, while
the original CryptoWorker component can be reused. Note that
replacing the CryptoBox, for a specific database column, with
another one will require the migration of data belonging to that
column. Different encryption schemes are not compatible so it
is necessary to generate new protected ciphertexts according
to the new CryptoBox encryption algorithm.

B. The life cycle of a Put and Get operation

To exemplify the behavior of our framework, and how this set
of components interact in an application scenario, lets assume a
NoSQL schema where each key is protected with deterministic
encryption, the first column value with standard encryption,
and the second column value with deterministic encryption. In
this step-by-step description, we will reference Figure 2 for
specifying where each computation is taking place.



Upon a Put request for a certain key-value pair (1), the
CryptoWorker module intercepts the request (2) and executes
its Encode operation. This will encrypt the key-value pair
with the appropriate techniques, by resorting to the various
CryptoBoxes (3). Afterwards, the secure Put request will be
forwarded to the NoSQL backend, where the Process operation
will simply store the data at the untrusted site (4). No operations
are necessary to Decode a Put operation.

A Get request for a specific key (1) would go through the
CryptoWorker (2) to execute the according Encode operation.
This encrypts the key with the same technique, thus resorting
to the associated deterministic encryption CryptoBox (3). This
encoded Get operation is now sent to the NoSQL backend
(4), that executes the query, which is a simple and unmodified
operation to recover the value associated to the encrypted key.
The data is returned to the trusted site CryptoWorker (4), for
execution of Decode. This again resorts to the CryptoBox to
decrypt the key-value elements to their plaintext values (3),
and reply to the original client request with the result (2,1).

C. Remote processing

The encryption techniques implemented in the experimental
part of this paper only require CryptoWorker processing at the
trusted infrastructure (Encode and Decode). However, for our
framework to be extensible towards optimizations or other
techniques discussed in the literature, such as searchable
encryption [11], one must be able to employ additional struc-
tures (such as protected indexes) and perform some additional
calculations at the untrusted site. This is the motivation to use
the CryptoWorker module deployed at the untrusted deployment
for the aforementioned Process operation, which is sufficiently
generic to capture complex mechanisms for computation over
encrypted data. In fact, our design can be easily extended with
other state-of-the art cryptographic techniques.

To exemplify, consider a single-word search query over data
protected with searchable encryption (1). This primitive makes
use of tokens, which are used exclusively to process some
search query over encrypted data. The trusted site CryptoWorker
intercepts the request (2) and executes the Encode operation to
produce a token. This token is then sent to the untrusted site
CryptoWorker (4 a) to execute Process. The remote process
must now access a searchable encryption CryptoBox to compute
the token over stored data and produce a query response
(4b and 4c). This response is then returned to the trusted
site CryptoWorker for Decode to be executed. Data is then
decrypted according to the respective CryptoBox (3) and the
reply is provided to the client (2,1).

In terms of scalability and availability, the techniques
discussed in this paper do not affect the sharding and replication
design of the NoSQL backend. However, in order to support
several NoSQL clients accessing the same data, it is necessary
to have a key management service so that all CryptoWorkers at
the trusted site have access to the necessary keys for encoding
and decoding the data in each query.
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Fig. 3: Implementation of SAFENOSQL resorting to HBase.

V. IMPLEMENTATION

The SAFENOSQL prototype is implemented on top of
Apache HBase, a distributed, scalable and open-source non-
relational database [9]. Inspired by Google’s BigTable, HBase
tables are multi-dimensional sorted maps, similar to the NoSQL
logical table representation discussed in the previous section.
Row keys are associated with an unbounded and dynamic
number of qualifiers (columns) that are grouped into column
families (groups of columns). Each value on a table is uniquely
identified by a column family’s name and qualifier’s name. A
table can be horizontally partitioned into several Regions, each
holding a subset of the rows for that table. This partitioning
scheme is transparent for the database applications and is a
fundamental characteristic that makes HBase highly scalable.

Figure 3 depicts how SAFENOSQL is instantiated over
HBase. At the trusted site, applications resort to the Secure
HBase client component, a modified HBase client that exports
the original HBase API (1) with privacy guarantees. Secure
requests are forward to the HBase cluster composed by an
HBase Master and several Region Servers. The client contacts
the Master component when it needs to locate the Region
Server(s) holding the Region(s) that serves the rows for that
request (2). Once the Region server is located, client requests
are made directly to the Region Server (3) that handles the
desired data to be processed and retrieved. The HBase Master
may be deployed in a primary/secondary replication mode to
ensure high availability, while the Regions are replicated using
HDFS to ensure data availability.

The HBase client API is similar to the one described in
Section IV (i.e., Put/Update, Get, Delete, Scan). Additionally,
Scan operations support Filters for qualifiers (SingleColum-
nValueFilter). Namely, it is possible to issue a Scan for the
entire table, or for a range of rows, and filter at the HBase
backend the desired qualifier values by equality or range.

In Figure 3 we also depict the components of SAFENOSQL
prototype. The gray boxes present the novel components that
were added to HBase in order to have a secure NoSQL



implementation. Our CryptoWorker implementation extends
the original HBase client implementation as a middleware
component and provides confidentiality guarantees on NoSQL
operations. Through a configuration file it is possible to define
the encryption technique that will be used for keys and
for qualifiers. Since qualifiers can be grouped into column
families, our configuration file allows defining the same
encryption scheme for all the qualifiers belonging to a specific
column family. As discussed in Section IV, the CryptoWorker
component is composed by a module that intercepts NoSQL
requests and resorts to the appropriate CryptoBoxes to encode
sensitive data, process it (if necessary), and decode encrypted
data according to the configuration file schema.

Our prototype currently contemplates three distinct Cryp-
toBoxes. Standard encryption (STD) CryptoBox relies on
OpenSSL [26] cryptographic library. Deterministic encryption
(DET) is implemented in accordance to the construction
described in [22]. Finally, the OPE CryptoBox is implemented
following the design of [24] and it relies on OpenSSL and
MPFR [27], a multiple-precision floating-point library.

Although the three supported cryptographic techniques do
not require additional computation at the HBase backend,
other techniques such as searchable encryption may require
keeping a secure index and having additional processing
over encrypted data at the backend. In HBase, supporting
these novel techniques is attainable without changing the core
implementation of HBase backend components, which would
increase significantly the implementation effort of our prototype.
For this, one can resort to HBase co-processors. These can be
seen as plugins specifying additional computation that must be
done at each Region Server when specific NoSQL queries are
executed. For instance, if a Get operation requires consulting
the secure index and doing some additional computation, it
is possible to deploy a CryptoWorker as a co-processor that,
for each Get operation, will do the necessary steps to provide
the correct results for that query. Our current prototype is
designed to avoid changing HBase’s core implementation.
In fact, supporting the three techniques discussed above did
not require any line of code at the HBase backend’s core
to be changed, while for the HBase client’s code we only
added approximately 2100 lines to integrate our CryptoWorker
implementation. This approach has the additional benefits of
compatibility with evolving versions of HBase, as well as easier
transition from HBase to other NoSQL databases.

Encrypted data retrieved with Get and Scan operations
must be decoded to plaintext at the trusted site CryptoWorker
before being forwarded to the application. As shown in our
experimental evaluation discussed in Section VI, decoding
information encrypted with OPE has a significant penalty in
the latency and throughput of HBase operations. As such,
we propose an optimization that trades additional storage
space for a considerable performance improvement. In our
system, every column qualifier encrypted with OPE will be
accompanied by the same value protected with STD. Then,
when a value protected with OPE must be retrieved to the client,
instead of decoding the OPE encryption, the CryptoWorker

module decodes the value protected with STD instead, which
is considerably faster. For instance, decoding a 14 bytes length
ciphertext with OPE takes 567.434µs and with STD takes
5.884µs. Moreover, for a 256 bytes ciphertext, OPE takes
2.861s to decode while STD takes 8.028µs. This optimization
also contemplates the storage of data encrypted with OPE, so
filtering operations such as equality or range queries are still
supported.

VI. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
SAFENOSQL prototype. First, we describe the experimental
setup and workloads, and then we discuss the results obtained.

A. Experimental Setup, Benchmark and Workloads

Experiments ran on a cluster composed of 6 servers equipped
with an Intel i3 CPU with four cores at 3.7 GHz, 8GB of RAM
and a 128 GB SSD disk interconnected with a gigabit switch.
The HBase cluster was deployed on 5 nodes. The HBase master
ran on an isolated server and four HBase Region Servers were
deployed on the remaining servers. Each RegionServer was
configured with 4GB of heap size, with 55% of this space
assigned to the memstore and 10% to the block cache.

The remaining server was used as the database client.
For this client, our experiments resort to the Yahoo! Cloud
Serving Benchmark (YCSB), a well-known benchmark suited
for NoSQL data stores, including HBase, that provides realistic
cloud-based workloads [28]. Each workload can be customized
by defining the operations that are going to be performed at
the NoSQL data store i.e., Insert (HBase’s Put), Read (HBase’s
Get), Update (HBase’s Put), Read-Modify-Write (HBase’s Get-
Update), Delete (HBase’s Delete) and Scan (HBase’s Scan)
operations. Also, other parameters such as the operation’s data
access pattern, the ratio for each operation, and the benchmark’s
execution time can be defined by the user.

Although YCSB operations allow testing most of the
HBase’s API, these do not contemplate equality and range
filter operations over column qualifiers (QualifierFilter or
SingleColumnValueFilter as typically known in HBase). For
this reason, we extended YCSB to include such operations on
the benchmarking suite. Each experiment discussed along this
section ran for 20 minutes with an extra 3 minute period of
ramp-up time for a database pre-populated with 10 million
rows. Also, each experiment was repeated 5 times to calculate
the mean and standard deviation across distinct runs.

Two table schemas were designed specifically for the
experiments in order to test our prototype in a more realistic
setup. With this approach it is possible to extract meaningful
results and conclusions, for this and other similar use-cases,
about the performance overhead induced by the different
cryptographic techniques. In more detail, as the healthcare
sector deals with different types of sensitive information and
it must comply with several legal regulations concerning data
privacy, we chose to explore such use-case.

The first table schema, Patients, is shown in Table I and
contemplates a subset of the data typically found on an Hospital
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database table that stores personal information from patients.
The NoSQL table stores an application generated key (Patient
ID) for each patient, while each row is composed by a set
of column families (Identification, Contacts, Observations,
Appointments) that group distinct column qualifiers holding
patient’s information (MainID, Surname, Name, Birth date,
Nationality, CivilD. Address, Contact, Observations). The
Appointments (App) column family can have a dynamic number
of qualifiers, each indicating the ID of the patient’s medical
appointments (Appointment ID). Table I also shows the size in
bytes of each column qualifier and a proposal for the encryption
techniques to be applied on each field in order to ensure privacy
of personal information while still allowing querying such
data. Briefly, most information related to a given Patient is
encrypted using standard encryption (STD). In order to be
able to retrieve the information of a specific patient given her
first name, last name and date of birth, the column qualifier
MainID contains such information encrypted with deterministic
encryption (DET). This specific set of characteristics is often
used in medical systems to identify the patients. The storage
space for a single row in plaintext is 1526 bytes and for the
proposed secure schema is 1888 bytes. This is an important
aspect to have in account as it represents another tradeoff on
data storage and bandwidth for secure NoSQL databases.

The second table schema, Appointments, is shown in Table II
and stores the Hospital appointments between a given physician
and a patient. The key (Appointment ID) is an unique identifier
generated by the application and each row is composed by
a set of column families (Physician, Patient, Appointment,
Institution) grouping distinct column qualifiers holding relevant
information for the appointment (Physician ID, Patient ID,
Appointment Date, Type of appointment, Observations, Institu-
tion Name and Address). In this table, we propose a possible
schema where the column qualifiers PhysicianID is encrypted
with DET, the Date of the appointment is encrypted with OPE,
while the remaining column qualifiers are encrypted with STD.
This design allows, for instance, retrieving all appointments of
a given physician for a given time period. According to the
optimization discussed in the previous section, a novel column
qualifier Date-STD was created in order to reduce the overhead
of decoding operations when OPE is being used. The storage
space for a single row in plaintext is 1552 bytes and for the
proposed secure schema is 1756 bytes.

B. Micro-experiments

Micro-experiments were performed for the Appointments
schema to understand the isolated impact of the cryptographic
techniques supported by SAFENOSQL prototype. Experiments

ran isolated YCSB operations, while all table qualifiers were
stored in plaintext and only the row keys were protected with
different cryptographic techniques (STD, DET, OPE). This
approach was used to provide a controlled testing scenario
where the only factor changing is the way a single data value
is encrypted. Such approach, allows a more precise comparison
of the overhead of each technique and a comparison with a
baseline HBase deployment without encryption. Benchmark
operations write/read the entire row, while Scan and Filter
operations were issued with a random starting row key. For
the Filter operations a pre-defined value stored in the database
was used as the value to be searched. We also varied the data
access pattern of the benchmark by running all experiments
with both the Zipfian (Hotspot) and Uniform distributions.

Figure 4 and Figure 5 and Table III show the throughput and
latency values for the micro-experiments. For STD encryption
we only show values for the write tests, while for DET
encryption we do not show values for range queries. As
explained in Section III, STD encryption applicability is limited
to the protection of data in scenarios where no operations are
to be performed over it, such as data transmission or storage.
Similarly, for DET encryption, as the order of the plaintext
is not enforced on the resulting cyphertext, this is not a valid
technique for retrieving data whose value is between a certain
range. Performing such queries over data encrypted in this
fashion would require a full database retrieval to the client
premises and subsequent decryption, which is unfeasible for
any realistic database deployment.

Regarding the results, as expected, performing insertions
and queries over data protected with STD and DET encryption
has a small overhead when compared with the analogous
operations done over plaintext. On the other hand, the overhead
is significant for the OPE technique mainly due to the time
spent encoding and decoding the plaintext and ciphertexts,
respectively. Nevertheless, this overhead value is according to
the expected value for our OPE CryptoBox implementation [24].
This means, that such value can be improved in the future
with more efficient implementations of OPE or by relying on
more efficient cryptographic techniques such as searchable
encryption [13]. The only exception is shown in the Qualifier
Equality Filter (QEF), where the performance of OPE is similar
to the baseline HBase deployment. In this equality filter most
of the overhead is due to the search of the correct value at the
HBase backend and a single set of key-value pairs is returned
and decrypted. On the other hand, for both Scan and Qualifier
Range Filter (QRF) operations the set of returned rows to the
client is significantly higher (at least one order of magnitude)
and the overhead of decoding key encrypted with OPE keys is
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INS READ RMW SCAN QEF QRF

U Z U Z U Z U Z U Z U Z

BAS Thr (ops/s) 333.835
± 7.107

334.255
±5.291

532.071
±10.689

614.828
±11.542

183.432
±7.082

204.391
±4.873

69.576
±7.331

79.095
±7.301

0.043
±0.006

0.043
±0.004

70.234
±11.020

78.537
±11.519

Lat (ms) 2.033
± 0.064

2.928
±0.047

1.874
±0.038

1.624
±0.031

5.582
±0.240

5.105
±0.165

14.447
±1.463

12.666
±1.134

26675.757
±3234.64

23404.915
±2063.02

14.502
±2.440

12.912
± 2.019

STD Thr (ops/s) 327.228
± 5.783

325.061
±5.746 - - - - - - - - - -

Lat (ms) 2.993
± 0.054

3.015
±0.056 - - - - - - - - - -

DET Thr (ops/s) 329.315
± 4.954

331.907
±7.559

476.395
±5.631

546.04
±22.883

184.304
±6.208

197.209
±8.222 - - 0.033

±0.002
0.032
±0.002 - -

Lat (ms) 2.973
± 0.046

2.951
±0.068

2.093
±0.025

1.828
±0.079

5.630
±0.137

5.313
±0.156 - - 29821.832

±1850.85
30228.441
±1951.79 - -

OPE Thr (ops/s) 120.438
± 0.862

121.082
±0.927

124.83
±1.382

136.988
±0.440

89.02
±1.892

90.579
±1.641

2.994
±0.026

2.998
±0.039

0.042
±0.006

0.045
±0.002

2.893
±0.049

2.906
±0.092

Lat (ms) 8.234
± 0.061

8.191
±0.064

8.001
±0.089

7.288
±0.023

11.998
±0.798

12.056
±0.449

333.716
±2.952

333.176
±4.441

23816.373
±3787.09

22355.588
±1134.39

345.251
±5.888

343.964
±11.362

TABLE III: Throughput (Thr) and latency (Lat) results for the micro-experiments. For YCSB operation (Insert (INS), Read,
Read-Modify-Write (RMW), Scan, Qualifier Equality Filter (QEF), Qualifier Range Filter (QRF)) values are shown for baseline
(BAS) HBase solution and for STD, DET and OPE schemes, including both Uniform (U) and Zipfian (Z) access patterns.

 0.25
 0.5

 1
 2
 4
 8

 16
 32

INS READ RMW SCAN QEF QRF

- - - - -- -- - - -- --

N
o
rm

al
iz

ed
 L

at
en

cy

STD-U
DET-U

OPE-U
STD-Z

DET-Z
OPE-Z

Fig. 5: Normalized latency for the micro-experiments. HBase
baseline results correspond to value 1. For each YCSB
operation (Insert (INS), Read, Read-Modify-Write (RMW),
Scan, Qualifier Equality Filter (QEF), Qualifier Range Filter
(QRF)) the latency is shown for STD, DET, and OPE encryption
schemes and both Uniform (U) and Zipfian (Z) access patterns.

W
or

kl
oa

d

In
se

rt

U
pd

at
e

R
M

W

R
ea

d

Sc
an

Q
EF

Q
R

F

A - 50% - 50% - - -
B - 5% - 95% - - -

E-1 5% - - - 75% 10% 10%
E-2 5% - - - 75% 20% -
F - - 50% 50% - - -
G 50% - 15% 10% - 10% 10%
H 10% - 45% 30% - 15% -

TABLE IV: Operations percentage per YCSB test.

highly noticeable. As expected, the Zipfian distribution provides
higher throughput for most tests due to the hotspot distribution
that leverages HBase caching mechanisms.

The previous results show that for each cryptographic
technique one can expect different tradeoffs in terms of database

performance and supported functionality. This way, on a real
deployment scenario, a single technique is not the best approach
for protecting all the information stored in the same database.
To understand the impact of combining different techniques we
next focus on macro-experiments where multiple techniques
are combined to provide a fully-functional database in a more
realistic experimental setup.

C. Macro-experiments

The macro-experiments were devised to assess the impact of
combining different cryptographic techniques for the Patients
and Appointments schemas. As discussed in Subsection VI-A,
we protected the key and column qualifiers with the crypto-
graphic techniques described in Table I and Table II in order
to ensure that useful queries can still run over encrypted data
while protecting sensitive information.

To evaluate the performance of our solution, we compared
it against a baseline HBase deployment storing everything in
plaintext, and ran a set of YCSB tests. Table IV shows the
ratio of operations performed for each test. Tests (A to F) are
standard configurations already provided in YCSB and typically
used in previous work [29]. We modified test E and created two
variants, E1 and E2. In the first we leverage Qualifier Equality
Filters (QEF) and Range Filters (QRF) for Date values of the
Appointments schema. In the latter, we leverage Equality Filters
(QEF) for the MainID of the Patients schema. Additionally, the
tests G and H were defined specifically for our tests, in order
to reproduce a typical query environment for our healthcare
use-case. The Appointments schema (test G) has a significant
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Fig. 6: Normalized throughput (a) and latency (b) results of macro-experiments (HBase baseline results correspond to value 1).
SC. System Metric A B E1 E2 F G H

AP
BAS

Thr (ops/s) 400.36 ± 16.191 421.183 ± 11.920 6.370 ± 0.430 - 277.306 ± 9.689 8.567 ± 1.897 -
Lat (ms) 2.502 ± 0.097 2.377 ± 0.081 157.703 ± 10.578 - 3.10 ± 0.123 125.278 ± 39.02

SAFENOSQL
Thr (ops/s) 292.396 ± 10.986 389.056 ± 41.218 6.843 ± 1.352 - 221.253 ± 3.725 6.617 ± 1.595 -
Lat (ms) 3.425 ± 0.127 2.597 ± 0.255 151.533 ± 27.342 - 4.521 ± 0.078 159.074 ± 33.503 -

PA
BAS

Thr (ops/s) 331.014 ± 10.075 326.441 ± 23.309 - 0.089 ± 0.003 221.154 ± 11.286 - 0.066 ± 0.002
Lat (ms) 3.024 ± 0.092 3.078 ± 0.210 - 11,284.588±395.137 4.534 ± 0.232 - 15,219.327±533.208

SAFENOSQL
Thr (ops/s) 332.467 ± 23.298 313.042 ± 11.189 - 0.055 ± 0.003 211.308 ± 8.300 - 0.056 ± 0.008
Lat (ms) 3.022 ± 0.195 3.199 ± 0.114 - 18,196.153±925.209 4.740 ± 0.186 - 18,354.071±2 801.68

TABLE V: Appointments (AP) and Patients (PA) schemas macro-experiments latency (Lat) and throughput (Thr) results for the
baseline (BAS) HBase and SAFENOSQL prototype.

number of insertions and a lower number of search queries. The
Patients schema (test H) has a smaller percentage of insertions
and a higher percentage of search queries. All experiments ran
with the zipfian access distribution.

In test G, appointments Date was populated with a random
value between 2015-2020. Filter operations (QEF and QRF)
ran for values comprehended between this range and performed
a full table Scan to search for such values. In test H, Patient’s
MainID were also filtered with a full table Scan to find the
desired values. For this experiment we ensured that only values
stored at the database are searched.

Figure 6a, Figure 6b and Table V show the throughput and
latency values for the macro-experiments. As expected, the
Patients schema provides less overhead in most tests since it
does not resort to OPE for protecting sensitive information. In
average, when compared to the baseline HBase system, the
Patients tests present an overhead of 12.29% across the different
YCSB tests. As the worst-case scenario an overhead of 37.9%
is visible in test E2. On the other hand, the Appointments
schema presents an average performance loss of 14.03%. In
workload A the overhead reaches approximately 27%.

For the workloads tests G and H, when compared to the
baseline HBase systems, overheads of 22.76% and 15.42% are
observable, respectively. A considerable part of the overhead
in workload G is due to OPE cipher’s performance, since the
insert proportion corresponds to 50% of the total operations.
In workloads H and E2, most of the performance overhead is
due to performing a range scan over keys protected with DET
encryption. As this encryption technique does not preserve the
order of the plaintext, a full table scan must be done to search
for the keys between the requests range of values.

Interesting results are shown for workload E1 where the
throughput and latency values are similar to the baseline. This
happens due to the extra qualifier Date-STD protected with STD
encryption that is stored along with the OPE Date qualifier. This

optimization was described in Section V and allows reducing
the overhead of decoding operations with the OPE CryptoBox.

The previous results show that combining different cryp-
tographic techniques is key for supporting a wide range of
applications workloads, with different NoSQL operations, while
providing acceptable performance. Also, there is still some
space for improvement, which justifies the importance of a
flexible framework such as SAFENOSQL that will allow easily
incorporating novel cryptographic techniques, with different
tradeoffs in terms of performance, security and functionality.

VII. CONCLUSION

This paper presents SAFENOSQL, a secure framework for
NoSQL databases aiming at a modular and flexible design that
can easily be extended with state-of-the-art privacy-preserving
computation techniques. In more detail, we propose an ar-
chitecture that resorts to novel CryptoWorker and CryptoBox
components in order to be generic for most NoSQL databases
and to easily accommodate different widely used cryptographic
techniques. We have implemented a prototype of our framework
based on Apache HBase and conducted an extensive set of
micro- and macro-experiments with various realistic workloads
to assess the practicality of our solution.

The results show that by combining different cryptographic
techniques, it is possible to have a practical solution that
balances the desired functionality, performance and security
for different applications. In average, when compared with a
baseline HBase deployment without any data privacy guaran-
tees, SAFENOSQL prototype introduces less than 15% of
performance overhead across the different realistic macro-
workloads tested. Also, the results show that there is still
space for improvement, for instance, by introducing other
cryptographic techniques in SAFENOSQL that can overcome
the current performance penalty of OPE. This is a key
conclusion that shows the importance of designing a flexible



architecture where the addition of novel encryption techniques
can be done in a straightforward fashion.
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