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Abstract—Due to convenience and usability, many deep learn-
ing (DL) jobs resort to the available shared parallel file system
(PFS) for storing and accessing training data when running
in HPC environments. Under such a scenario, however, where
multiple I/O-intensive applications operate concurrently, the PFS
can quickly get saturated with simultaneous storage requests and
become a critical performance bottleneck, leading to throughput
variability and performance loss.

We present MONARCH, a framework-agnostic middleware for
hierarchical storage management. This solution leverages the
existing storage tiers present at modern supercomputers (e.g.,
compute node’s local storage, PFS) to improve DL training
performance and alleviate the current I/O pressure of the shared
PFS.

We validate the applicability of our approach by developing
and integrating an early prototype with the TensorFlow DL
framework. Results show that MONARCH can reduce I/O op-
erations submitted to the shared PFS by up to 45%, decreasing
training time by 24% and 12%, for I/O-intensive models, namely
LeNet and AlexNet.

Index Terms—High-Performance Computing, I/O Optimiza-
tion, Storage Tiering, Deep Learning

I. INTRODUCTION

High-performance computing (HPC) infrastructures are in-
creasingly popular to support computational demanding deep
learning (DL) workloads. Such workloads are typically backed
by large-scale datasets that range from few GiB to several TiB
in size and are made of multiple small-sized files. For example,
Open Images [1] has around 9 million images and ImageNet-
22k [2] has approximately 14 million images. During training
time, data samples are repeatedly read from storage in random
order to achieve accurate and unbiased models. However,
this random access pattern, combined with the long-lived and
recurrent access to millions of small-sized files, can easily
overload HPC’s shared parallel file system (PFS) (e.g., Lus-
tre [3], BeeGFS [4], GPFS [5]) with the exceptional amount
of both data and metadata requests, leading to high throughput
variability and performance loss [6]–[10].

DL frameworks (e.g., TensorFlow [11], PyTorch [12],
MXNet [13]) are aware of this performance bottleneck and
follow various approaches to suppress them. First, optimized
data formats, such as TensorFlow’s TFRecords [14], MXNet’s
RecordIO [15], and HDF5 [16] pack several small-sized files
into a single, larger one, reducing the number of files being
accessed and, consequently, the number of metadata operations
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required during the training phase. Second, DL frameworks
provide an optimized data loading pipeline that enables I/O
optimizations, such as caching, prefetching, and parallel I/O.

Nevertheless, many datasets tend to go beyond the memory
capacity of HPC compute nodes, and DL frameworks fail
to properly utilize the nodes’ local storage mediums. Thus,
most of the employed optimizations become subpar [17]–
[19]. Indeed, in modern supercomputers, such as Frontera [20]
and ABCI [21], compute nodes are equipped with fast local
storage mediums (e.g., SSD, NVMe) that can be used to
totally or partially cache DL datasets, consequently reducing
the pressure on the PFS and speeding up DL training.

However, the decision to resort to these local devices must,
in most cases, be made manually by users when submitting DL
jobs. To prevent this manual effort, previous work allows users
to cache full datasets at the compute nodes’ local disks [18],
[19]. The main drawback is that these optimizations are only
applicable under scenarios where the entire dataset can be
cached at local devices, while datasets that do not meet this
condition must still be entirely stored at and accessed from
the PFS.

Therefore, it is imperative to identify novel solutions for
taking advantage of compute nodes’ local storage capabilities
to reduce the pressure of DL jobs at the PFS and, consequently,
to provide better and more sustained training performance.
Furthermore, these solutions should: i) support datasets with
variable sizes that may or may not be cached entirely on the
compute node’s (i.e., local storage and memory); ii) be trans-
parent to users while not requiring any manual intervention or
changing how DL workloads are deployed; and iii) be portable
and applicable across different DL frameworks.

To overcome the aforementioned challenges, we propose
MONARCH, a framework-agnostic middleware for hierarchical
HPC storage management, while providing the following
contributions:
• An experimental study demonstrating the performance

impact of running DL jobs under the Lustre PFS and
the compute nodes’ local storage. Results show that local
storage can significantly accelerate training performance
and reduce throughput and I/O variability.

• MONARCH, a novel storage middleware that mediates
I/O requests between DL frameworks and HPC storage
resources. It provides a new tiering mechanism that
leverages from persistent storage resources (e.g., local
disks) available at compute nodes to fully or partially
cache DL datasets and to alleviate the I/O pressure at the



PFS. Also, MONARCH follows a decoupled design and
provides a simple interface that enables straightforward
integration with existing DL frameworks.

• An early prototype of MONARCH and its integration
with TensorFlow, which only required adding 6 lines
of code. MONARCH is available at https://github.com/
dsrhaslab/monarch.

• An experimental evaluation of our prototype with
different models and dataset sizes. Results show that
MONARCH can reduce I/O operations submitted to the
shared file system by up to 45%, decreasing DL training
time by 24% and 12% for I/O-intensive models, namely
LeNet and AlexNet.

II. MOTIVATION

We conducted a preliminary experimental evaluation to un-
derstand and demonstrate the performance impact of running
DL jobs from datasets stored in different storage mediums.
Namely, we considered the following testing scenarios.
• Vanilla-lustre. Dataset samples are served solely from

the remote storage backend i.e., Lustre file system.
• Vanilla-local. Dataset samples are served solely from the

compute node’s local storage through the XFS file system.
• Vanilla-caching. During the first training epoch, dataset

samples are served from Lustre and written to local
storage, while for the remainder epochs, samples are read
from the local disk.

Experimental setup. Experiments were conducted on a com-
pute node of the Frontera supercomputer. The compute node
is equipped with two 16-core Intel Xeon E5-2620 processors,
four Nvidia Quadro RTX 5000, 128 GiB of RAM, and a single
240 GiB SSD with an accessible 119 GiB partition. Software-
wise, it uses CentOS 7.8 with the Linux kernel v3.10. We
limited memory usage to 68 GiB to simulate a scenario where
the dataset could not fit entirely in memory.

Dataset, models, and DL framework. We used a truncated
version of the ImageNet-1k dataset [22], that includes 900k
images (100 GiB), enabling the dataset to fit entirely on the
local device. To speed up training process, the dataset was
converted into TFRecords. Experiments included two I/O-
bound models, namely LeNet [23] and AlexNet [24], and a
compute-bound model, namely ResNet-50 [25]. Due to its
popularity and support for the caching optimization discussed
in the vanilla-caching setup [26], we used the TensorFlow
DL framework (v.2.3.2) with I/O parallelism, prefetching and
parallel preprocessing optimizations enabled. For all runs,
TensorFlow used all four GPUs available in the compute node.

Methodology. We measured the elapsed time and resource
usage (i.e., CPU, GPU, memory) of all experiments throughout
three training epochs. The results of each experiment concern
the average and standard deviation of 7 runs.

A. Results Analysis

Training time. Figure 1 depicts the average training time
for each epoch under all described scenarios. When com-

Fig. 1. Average training time and standard deviation for the vanilla-lustre,
vanilla-local, and vanilla-caching setups when using LeNet, AlexNet, and
ResNet-50 models. Results are detailed per training epoch.

pared to vanilla-lustre, the vanilla-local setup significantly
reduces overall training time for LeNet and AlexNet mod-
els. Specifically, under LeNet, the combined execution time
(three epochs) decreases from 1205 to 650 seconds, while for
AlexNet it decreases from 1193 to 976 seconds, representing
a 46% and 18% decrease, respectively. The same is not
observed for ResNet-50, as it is a compute-bound model in
this experimental setup and imposes less I/O demand [27].

Regardless of the DL model, we observed high performance
variability under the vanilla-lustre setup, since Lustre is con-
currently accessed by other jobs executing in the Frontera
supercomputer. This motivates our claim that reducing the load
on shared storage is key for having sustained and predictable
performance for DL workloads.

With TensorFlow’s caching mechanism (i.e., vanilla-
caching), data samples are cached at the local SSD during the
first training epoch, reducing training time for the LeNet and
AlexNet models by 288 seconds and 135 seconds, representing
a 24% and 11% decrease when compared to vanilla-lustre.

However, a slight increase in training time is visible for
the first epoch when using the vanilla-caching, going from
396 seconds (vanilla-lustre) to 437 seconds. This is due to the
extra data copying that must be done between Lustre and the
local file system. On the other hand, a performance boost is
noticeable for the second and third epochs, reaching similar
performance to the vanilla-local setup. Namely, training time
is decreased by up to 43% and 25% (total elapsed time of 424
and 557 seconds) for LeNet and AlexNet, respectively. For
the same reason, performance variability is more noticeable
during the first epoch when Lustre is being accessed.

Resource usage. Under vanilla-lustre, LeNet has an average
CPU and GPU utilization of 30% and 22%, respectively,
increasing to 57% and 39% when configured with the vanilla-
local setup. For vanilla-caching, CPU usage increases to 37%
and GPU usage to 28%. For the AlexNet model, the vanilla-
lustre scenario shows 31% of CPU usage and 58% of GPU
usage. For vanilla-local, these values rise to 42% and 72%,
respectively. With vanilla-caching, CPU usage is 34% and
GPU usage is 63%. These results highlight that, with better
storage performance, compute nodes’ CPU and GPU resources
are used more efficiently by I/O-bound models. As ResNet-
50 is a compute-bound model, for all setups, CPU and GPU
usages remain at 10% and 90%, respectively.

Finally, memory usage remains approximately the same for
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Fig. 2. MONARCH’s simplified architectural design.

all models and testing scenarios, averaging at 10 GiB.

Summary. Results show that serving the dataset from local
storage improves training time and performance predictability
for I/O-bound models, while reducing data and metadata pres-
sure on the Lustre file system. TensorFlow’s caching mecha-
nism transparently copies the dataset to local storage without
manual input from users. However, the current implementation
of this mechanism is only applicable when the full dataset fits
on the local disk, which is not the case for many scenarios
(e.g., the original ImageNet-1k dataset has 140GiB).

III. MONARCH

MONARCH is a framework-agnostic storage tiering middle-
ware that leverages existing storage mediums of HPC infras-
tructures to accelerate DL training performance. MONARCH
sits between the DL framework and a hierarchy of storage
backends, including local file systems mounted on the compute
node’s local storage and distributed storage such as the Lustre
PFS. Its primary purpose is to move data samples from
the shared and performance-expensive remote storage to the
compute node’s local device to reduce the DL training time
as well as the I/O pressure imposed over the PFS.

To ensure transparency to users, and to not conflict with
I/O-oriented optimizations already implemented at the DL
framework (e.g., data shuffling, caching and prefetching, I/O
parallelism), MONARCH resides at the POSIX layer, thus not
impacting the internal operation model of the targeted frame-
work. It achieves this by exposing a simple API composed
by a custom read operation that replaces the traditional
POSIX read system call used by DL frameworks. Such
an API enables straightforward integration with different DL
frameworks, as it requires minimal code changes, maintaining
MONARCH’s design generic and portable.

A. Design

Figure 2 depicts MONARCH’s architecture. It is organized in
three main modules, namely the storage hierarchy, placement
handler, and metadata container.

Storage hierarchy. The storage hierarchy module organizes
and manages the storage tiers (or levels) that will be used

to read and store data samples for DL training. Tiers are
organized hierarchically, and the system designer defines their
order. For instance, in this paper, storage tiers are organized
by descending order in terms of performance, but could be
organized through other criteria (e.g., storage quota). Each
tier is represented by a storage driver, which is an object
that abstracts the I/O logic performed under a given storage
backend (i.e., local file system, PFS). In addition, this object
contains a set of properties that allow governing the current
state of that backend, including storage path (i.e., file system
mount point) and available storage quota (storage ocuppation).
This abstraction adds the possibility to support different stor-
age backends, promoting modularity and extensibility.

Except for the last one, all levels start without any files
and are read-write backends. The last level is reserved for the
PFS (e.g., Lustre), which holds the full dataset and acts as a
read-only data source.

Placement handler. The placement handler module holds
the logic to select the storage tier where a given file should
be placed. The data placement process occurs at runtime
and follows the user-defined placement policy specified at
the storage hierarchy module. Specifically, given a storage
hierarchy of size N , the algorithm starts the data placement in
descending order, writing the data samples first to level 0 until
reaching its capacity, moving then to the remainder levels, until
all levels that hold local storage drivers are filled ([0, N −2]).
This module provides a dedicated thread pool to fetch and
store data samples from the lowest storage tier (e.g., PFS) to
other levels, enabling DL frameworks’ requests to be served
in parallel. Contrary to related work [18], [19], our strategy
allows supporting storage tiering when the dataset does not
fit entirely on local storage. Moreover, due to the original
workflow logic of the DL framework, no evictions are made
at any level of the storage hierarchy. As the DL training data
access pattern is random (i.e., data shuffling), all files consider
the same probability of being access within each epoch. Using
a cache replacement policy would increase the operations
between storage tiers, accentuating I/O trashing effects and
the strain placed on the PFS. Our experiments demonstrate that
this placement policy works well in the evaluated scenarios.

Regarding the timing when data placement is done, there are
two main options: i) training files are read from the PFS and
placed in the corresponding storage levels before executing
the training phase; or ii) files are placed in the correct storage
level during the first epoch of the training phase while being
requested by the DL framework. We opted for the second
approach to prevent any delay in the training execution time.
With this approach, data samples are fetched and placed at the
different tiers by following the order of I/O requests issued
by the DL framework. Also, this strategy requires the same
number of operations to the PFS backend as the first one, thus
not adding additional I/O pressure on the shared file system.

In more detail, when a file is requested for the first time by
the DL framework, the corresponding POSIX read request is
intercepted by MONARCH, and the file content is read from



the last tier level. Then, the content returned by the request
is forwarded to the DL framework and, at the same time,
in background, it is written to the appropriate storage level
following the data placement algorithm previously discussed.

When using large file formats (e.g., TFRecords), the DL
framework may issue read requests for obtaining only a minor
portion of the file’s content. In this scenario, MONARCH
replies to the DL framework with the requested file content,
but, in background, it reads the full content of the file from
the last tier level and writes it to the corresponding storage
level. This is a meaningful optimization that allows subsequent
requests to the same file to be served from a top-level tier
instead of the PFS.

Metadata container. The metadata container module man-
ages a virtual namespace of the overall storage hierarchy,
storing general information about each file (given by file info),
including its size, name, and current location (i.e., storage
tier). Similar to the main workflow of HPC jobs, the metadata
container follows an ephemeral storage model. Specifically,
the namespace, alongside other structures of the remainder
modules, is populated at the beginning of the DL training
phase, continuously updated during runtime, and removed at
the end of the job’s execution.

B. MONARCH’s Operation Flow
We now describe the main operation flow of a read request

made by a DL framework to MONARCH, as illustrated in
Figure 2. For illustration purposes, let us consider a dataset
composed of large-sized files (e.g., TFRecords). Before ex-
ecution, the system designer specifies the main MONARCH
configuration, defining the storage tiers that should be consid-
ered. For example, MONARCH is tuned with two storage tiers
— level 0 respects to the compute node’s local file system that
is backed by the local SSD drive, while level 1 points to the
dataset location at the shared PFS (e.g., Lustre).

At startup time, before any request is submitted, the DL
framework initializes a MONARCH instance. Here, MONARCH
initializes the metadata container module by traversing the
directory where the dataset resides (level 1) and builds the file
info for each file.

At execution time, upon a read request made to a file X by
the DL framework with the intent of reading a small portion
of the file, MONARCH intercepts the request and verifies at the
metadata container module which storage level where file X
is placed/stored ( 1 ). Having this information, the read request
is forwarded to the corresponding storage driver (i.e., level 1)
and submitted to the respective storage backend ( 2 ). After
completing the request, the retrieved content is served back to
the DL framework.

At the same time, MONARCH utilizes one of the thread
pool’s background threads ( I ) to perform the data placement
of X . First, the placement handler ( C ) determines the level
where X should be placed. It does so by hierarchically
traversing the storage tiers ( II ), searching for the first one
that has enough space to store the fetched content. In this case,
level 0 is picked. At that time, another request is submitted

to the thread pool to perform a copy of the file from level 1
to level 0 (operations 3 and 4 ). As explained previously,
this mechanism copies the full content of the file so that
subsequent read requests can be served from a faster storage
tier. An independent thread performs this to avoid delaying the
retrieval of the partial content requested by the DL framework.
If the DL framework had requested the full content of the file
operation, event 3 would not happen, and MONARCH would
copy the content read in 2 and place it on level 0 ( 4 ). Finally,
the file storage level is updated to 0 ( III ) and the storage
occupation of level 0 ( II ) is updated.

Throughout the DL workload execution, files are stored in
this fashion until all available storage tiers (except for PFS)
run out of storage space or if the first epoch has ended (i.e., the
full dataset is already stored at the upper storage levels). After
the placement ends, MONARCH redirects the DL framework
requests to their corresponding storage level.

C. Implementation

We implemented a MONARCH prototype with 1,500 lines
of C++14 code. The placement handler module implements
a thread pool of background threads that copy data sam-
ples between storage tiers. This thread pool was imple-
mented using the C++ Thread Pool Library (CTPL), un-
der 0.0.2 version [28]. We implemented the metadata con-
tainer’s namespace with lookup tables using the Abseil library
(v20210324.2) [29]. All MONARCH modules are thread-safe
to enable multi-threaded environments.

Integration with TensorFlow. We integrated MONARCH with
the TensorFlow framework. This framework was chosen due
to its widespread use and adoption by the DL community. The
integration of MONARCH with TensorFlow was reasonably
straightforward. Namely, the latter already provides several
interfaces to interact with different storage backends (e.g.,
POSIX, HDFS, S3) and allows building custom drivers for
other storage backend interfaces. Therefore, we developed a
new driver based on the existing POSIX file system one and
just replaced the pread invocation with our Monarch.read
operation. The Monarch.read operation reads data from
MONARCH rather than acessing the default POSIX storage
backend. Contrarily to the POSIX pread, Monarch.read
receives the filename as an argument, rather than its file
descriptor. This integration only required changing 6 LoC at
TensorFlow, originated by the middleware instantiation, driver
registration, and the pread substitution. This process will be
similar for other frameworks.

IV. TENSORFLOW EXPERIMENTAL EVALUATION

A preliminary evaluation was conducted for the MONARCH
prototype to assess two main questions:

• Can MONARCH improve training performance for differ-
ent DL models and dataset sizes?

• Can MONARCH reduce the I/O pressure on the PFS
backend?



Fig. 3. Average training time and standard deviation for Vanilla-lustre,
Vanilla-local, Vanilla-caching and MONARCH setups when using the LeNet,
AlexNet and ResNet-50 models with the 100 GiB ImageNet-1k dataset.
Results are detailed per training epoch.

Experimental setup and methodology. The experimental
setup, models, and methodology used in these experiments
are the same as those described in Section II. The only
differences are that the MONARCH prototype and a new
transformed version of the ImageNet-1k dataset were added
to the evaluation. This new dataset contains 3 million images,
sizing at approximately 200 GiB, and was used to assess the
scenario where data cannot fit entirely on the compute node’s
local storage and memory.

Configurations. MONARCH’s prototype was configured with
6 threads for the placement handler’s thread pool and two
storage levels for the storage hierarchy module. Namely, level
0 corresponds to the compute node’s XFS file system mounted
on top of a local SSD partition with 115 GiB of available
storage space. Level 1 corresponds to the dataset directory
stored at the Lustre file system. TensorFlow was used with the
same configurations and optimizations discussed in Section II
when deployed together with our middleware.

A. Training time

We start by analyzing the scenario where the ImageNet-1k
dataset completely fits on the compute node’s local disk (i.e.,
same dataset used in the motivation experiments) and then,
we discuss the results for the alternative version of the dataset
that can only be partially stored on the local storage medium.

100 GiB ImageNet-1k dataset. Figure 3 shows that, in
comparison with vanilla-lustre, using MONARCH significantly
reduces average training time for LeNet and AlexNet. The
LeNet model training time is reduced from 1205 to 811
seconds (33% decrease). As for the AlexNet model, the
training time is reduced from 1193 to 1018 seconds (15%
decrease). As previously discussed in Section II, the training
performance is similar across all setups for the ResNet model.

The average training time for the first epoch of LeNet and
AlexNet models is smaller for MONARCH when compared
with both vanilla-lustre and vanilla-caching. However, one
would expect this time to be similar across setups since
all of them are reading data from the PFS backend. We
believe this difference is justified by the placement mechanism
implemented by our solution (Section III-A). Namely, when
TensorFlow requests a portion of a TFRecord, MONARCH will
read the full content of this record and place it at a faster
storage tier. Therefore, subsequent portions of the TFRecord

Fig. 4. Average training time and standard deviation for Vanilla-lustre and
MONARCH setups when using the LeNet, AlexNet and ResNet-50 models with
the 200 GiB ImageNet-1k dataset. Results are detailed per training epoch.

will be read from this level and not from the PFS, thus boosting
I/O performance and reducing training time.

For the second and third training epochs, MONARCH and the
other two setups that leverage local storage gain a considerable
performance boost, when compared to vanilla-lustre, reducing
training time by up to 47% and 23% (total elapsed time of 398
seconds and 570 seconds) for LeNet and AlexNet. Finally,
the metadata initialization phase performed at the metadata
container component takes approximately 13 seconds for the
considered dataset.

200 GiB ImageNet-1k dataset. Since this extended dataset
does not fit entirely on the local storage medium of compute
nodes, only the MONARCH and Vanilla-lustre setups present
viable solutions for its training (Vanilla-caching is not included
because it requires the full dataset to fit into the local medium).

As depicted in Figure 4, the computational-bound ResNet
model maintains similar performance for both setups. More
interestingly, the LeNet model execution decreases from 2842
to 2155 seconds (24% reduction) when using our solution. For
AlexNet, the average training time goes from 3567 to 3138
seconds (12% reduction). The improved training performance
can be again explained by the decrease in the number of
accesses to the Lustre file system, mainly on the second and
third training epochs. Note that, since the dataset cannot be
stored completely at the local storage medium, there are still
I/O operations being issued to Lustre in the second and third
epochs, namely approximately 360,000 operations (out of a
total of 798,340 operations) at each epoch. Globally, during
the full training workload, MONARCH reduces I/O operations
to Lustre by an average of 55%. Given the size of the dataset,
the metadata initialization phase performed at the metadata
container component takes approximately 52 seconds.

B. Resource usage

For the 100 GiB dataset experiments, and in comparison
with the results obtained in Section II, MONARCH demon-
strates the second highest CPU and GPU utilization while only
being surpassed by the vanilla-local setup. Namely, CPU and
GPU usage was approximately 44% and 31% for LeNet model,
37% and 68% for the AlexNet, and 11% and 91% for ResNet.

For the 200 GiB dataset experiments, MONARCH is able to
increase CPU and GPU efficiency when compared with the
vanilla-lustre setup. In more detail, for LeNet, vanilla-lustre
obtains 36% of CPU utilization and 30% of GPU utilization,
while MONARCH increases those values to 46% and 38%. For



AlexNet, MONARCH increases CPU usage from 31% to 33%
and GPU usage from 63% to 69%. For ResNet, both setups
use 9% of CPU and approximately 90% of GPU resources.
Finally, memory consumption is identical for all setups and
experiments and is approximately on the 10 GiB mark.

C. Summary

To conclude, the previous results show that MONARCH can
improve training execution and avoid costly I/O operations to
the Lustre PFS. Further, the optimizations discussed in the
paper are relevant even for scenarios where the full dataset
can only be partially cached at local storage, leveraging an
average reduction of 55%, resulting in a decreased training
time of 24% and 12%, for LeNet and AlexNet.

V. RELATED WORK

The DL storage bottleneck is currently a relevant and open
research issue that has inspired different I/O optimizations.

Data loading and preprocessing. Some proposals improve
DL data loading and preprocessing efficiency by resorting to
different caching and prefetching algorithms. As examples,
DALI [30] supports direct I/O prefetching from storage to
GPUs, Pumma et al. [31] optimize Caffe’s LMDB I/O sub-
system to improve the mapping and caching of training data
from storage to memory, while CoorDL [32] provides insights
on storage I/O data stalls and mitigates them by providing a
new in-memory caching policy.

Although our solution leverages some ideas from these
works (e.g., data caching policies, applicability to different
frameworks), it is focused on leveraging the local disks of
compute nodes to improve training performance and reduce
the pressure on the PFS backend. Therefore, it is orthogonal
to this work and can even be used in conjunction with it.

Data substitution and staging. Some solutions employ data
substitution techniques [33]–[35] where training samples being
served to DL frameworks are replaced by others (e.g., cached
files) that are faster to access. These techniques are useful
for scenarios where several jobs are training models from
the same dataset (i.e., shared dataset). Differently, MONARCH
optimizations are designed for single-job training scenarios
where, to improve accuracy, each file of the dataset must be
read once per epoch and in a random fashion. In this scenario,
if the cache size is relatively small when compared to the full
dataset, data substitution techniques either require accessing
the PFS multiple times or may lead to fetching the same files
repeatedly at each training epoch, thus potentially impacting
training accuracy.

Serizawa and Tatebe [19] use the local disks of compute
nodes to fully cache datasets to be trained with the Chainer
framework. Furthermore, Fanstore [18] aggregates the local
storage of several compute nodes to enable data sharing in
distributed DL training environments. Finally, Diesel [36]
resorts to local storage mediums and an external distributed
key-value store service to cache data and metadata information
needed for DL training workloads.

Again, MONARCH is designed for single-node training
workloads and provides a simpler solution that avoids the need
to allocate additional resources and orchestrating complex data
and metadata staging areas, while not assuming that the dataset
fits entirely on any of the intermediate storage tiers.

Storage tiering. NoPFS [17] utilizes a performance model
to implement data prefetching and hierarchical caching. This
solution can leverage different storage devices and hierarchies,
while assuming that the training dataset may not fit entirely
in each one of these.

MONARCH is focused on the performance impact of storage
tiering and outsources data prefetching optimizations to the
built-in mechanisms already present in frameworks such as
TensorFlow, or provided by external solutions such as DALI.
This enables MONARCH to be less intrusive than NoPFS,
when being integrated with existing frameworks, and avoids
changing the way users specify and deploy their DL scripts.

VI. CONCLUSION AND DISCUSSION

This paper presents MONARCH, a framework-agnostic mid-
dleware for deep learning that leverages the hierarchical stor-
age organization present at HPC infrastructures. Preliminary
results, resorting to various models and dataset sizes, show that
a MONARCH-enabled TensorFlow can speed up DL training
and reduce I/O pressure on the shared PFS backend.

Moreover, the work presented in this paper opens the path
to several interesting research questions to be pursued.

Additional experiments. Other models, datasets, and
DL frameworks should be considered to further assess
MONARCH’s contributions. Currently, we are integrating our
system with PyTorch, which is an important step to validate
MONARCH’s portability and can additionally be used as the
basis for comparison with the NoPFS solution that also targets
this framework.

Consider more storage layers. MONARCH is designed and
implemented to support different storage devices organized
into multiple hierarchy levels. Therefore, it would be attrac-
tive to pursue experiments with additional hierarchy levels
composed of other storage devices that may be available at
supercomputers (e.g., persistent memory or even RAM).

Distributed training. The scope of this paper is targeted
towards local DL training. An interesting future research
direction would be to expand MONARCH’s design to support
distributed DL training. This raises new questions regarding
data placement and caching that must be addressed as multiple
nodes will need access to different data shards of the dataset.
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