


Motivation

2

● Storage services are typically implemented in the kernel

● More performant than user-level services

– Less context switches, memory copies

● Kernel-level development is complex

– Operating system-specific, limited environment

● User-space services have several advantages

– Easier development and maintenance

– Greater portability
– Access to more and higher-level languages and libraries
– Improved reliability, fault tolerance, and security

● E.g., FUSE: https://github.com/libfuse/libfuse

https://github.com/libfuse/libfuse


Block devices

● We consider user-level development at the block layer

● Block devices expose storage devices/systems

– Contiguous sequences of fixed-size blocks

● Used by a wide range of applications

– Either directly or through local file systems

3

/dev
├── loop0
├── loop1
├── ...
├── nvme0n1
├── ...
├── sda
├── sdb
└── ...

block devices



Block device drivers

● Block device drivers implement the behavior of block devices

● Are typically included in the kernel

– Or separately as loadable kernel modules

● Can be implemented in user space by leveraging existing 

operating system subsystems

4



Network Block Device (NBD)

● Provides access to remote storage through block devices

● Client-server architecture

– In-kernel block device driver as client

– User-space process as server

● Communication through TCP or Unix Domain Sockets

● Can create custom NBD servers

– Using frameworks like BUSE, nbdcpp, nbdkit

● Effectively allows building drivers in user space

– Create custom server with desired logic

– Deploy in same host as client

5



Evaluation methodology

● Built "pass-through" drivers with BUSE, nbdcpp, nbdkit

– Redirect all requests to underlying hardware device

● Measured throughput, latency, CPU utilization

– When operating on underlying device
– When operating on each pass-through device

● 16 workloads performing operations directly on block device

● 25 workloads performing operations on ext4 file system backed by block device

– Data-intensive micro workloads

– Metadata-intensive micro workloads

– Macro workloads

● (Full results in the paper)

6



NBD: Performance

● Throughput of pass-through devices, relative to underlying device:

– nbdcpp (not shown) never outperforms BUSE

– BUSE (like nbdcpp) processes requests sequentially; nbdkit in parallel
– Sockets impose an additional memory copy

7



● SCSI: Standards for computer ↔ storage device data transfer

– Target: service that handles SCSI commands

– Initiator: client that submits SCSI commands

● Linux's SCSI subsystem includes TCMU

– Enables user-level processes to act as SCSI targets
– Communicates with kernel through the UIO framework

● Can be used to create user-level block device drivers

– Implement SCSI target using TCMU with desired logic

– Deploy target in same host as client
– Configure initiator to expose block device backed

by deployed target

Target Core Module in User space (TCMU)

8



TCMU: Performance

● Same plot as before, now with TCMU:

– Overhead on throughput of up to 57%
– Better than NBD-based solutions under some workloads, worse under others

9



A new solution is needed

● Existing solutions have significant performance limitations

● Should not rely on subsystems designed for other purposes

– Inherent limitations of implementations targeting networked access
– Less room for specialized optimizations and improvements

● Can do better with a purpose-built framework

– Improve performance
– Unlock further performance and functionality improvements

10



The BDUS framework

● Built specifically to enable the development of

block device drivers in user space

● Design curtails memory copies and system calls

● Fully-functional, open-source implementation for Linux

– https://github.com/albertofaria/bdus

● Driver replacement and recovery with no downtime

– Hot-swap the driver of an existing device 

– Recover from a failed driver without interruption of service

● Less overhead and resource utilization than existing solutions

11

https://github.com/albertofaria/bdus


BDUS: Design and implementation

● Two main components:

– kbdus kernel module

– libbdus user-space library

● Drivers are user-level C programs

– Implement handlers for each request type

– Specify block size, total device size, …

– Link against libbdus

● Run compiled driver to create device

– Appropriate handler called for every request

● Kernel ↔ user communication uses ioctl()
– Through character device /dev/bdus-control
– Average of 1 system call per request

12



BDUS: Performance

● Same plot as before, now with BDUS:

– Degrades throughput by at most 33%
– Improves throughput over existing solutions by up to 43%
– Outperformed by nbdkit under file-/web-server due to unfair configuration (see paper §6.2)

13



BDUS and FUSE

● FUSE: Enables the implementation of file systems in user space

● Similar objective as BDUS, different layer of the storage stack

– BDUS and FUSE are orthogonal and complementary to each other

● But many storage functionalities can be implemented at both layers

– Compression, deduplication, thin provisioning, encryption, erasure coding, replication, …

● May have to decide between using BDUS or FUSE

– Must have knowledge of performance advantages/disadvantages 

14



BDUS and FUSE: Performance

● Relative throughput of FUSE pass-through file system:

– Same workloads as before, compared with previous BDUS results

– BDUS outperforms FUSE significantly under many workloads

– Most noticeable under metadata-intensive workloads

15



Summary

● Existing solutions exhibit limited performance

● Restricted by dependency on existing subsystems

– Also limits the introduction of specialized functionalities and optimizations

● BDUS follows a clean-slate approach

– Improved performance and resource utilization

– Additional features for driver replacement and recovery
– Unlocks further performance and functionality improvements

● Outperforms FUSE in file system stacks

– Particularly under metadata-intensive workloads

– BDUS is thus a useful alternative over FUSE when a storage solution can be built using either

16



BDUS is open source!

17

https://github.com/albertofaria/bdus

https://github.com/albertofaria/bdus

