
Pods-as-Volumes: Effortlessly Integrating Storage Systems and
Middleware into Kubernetes

Alberto Faria
INESC TEC & University of Minho

Ricardo Macedo
INESC TEC & University of Minho

João Paulo
INESC TEC & University of Minho

ABSTRACT
We present Pods-as-Volumes (PaV), a Kubernetes plugin that simpli-
fies the implementation of storage volume provisioners by allowing
all logic underlying the lifecycle and behavior of volumes to be
specified as pod templates, which are then instantiated as needed to
create, delete, and expose volumes to applications. PaV reduces the
effort required to integrate storage systems into Kubernetes and
enables the straightforward creation of storage middleware com-
ponents, improving modularity and Kubernetes’ ability to manage
storage stacks.

CCS CONCEPTS
• Software and its engineering → Software as a service orches-
tration system; • Information systems → Information storage
systems.

KEYWORDS
Kubernetes, storage, middleware
ACM Reference Format:
Alberto Faria, Ricardo Macedo, and João Paulo. 2021. Pods-as-Volumes:
Effortlessly Integrating Storage Systems and Middleware into Kubernetes.
In Seventh International Workshop on Container Technologies and Container
Clouds (WoC ’21), December 6, 2021, Virtual Event, Canada. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3493649.3493653

1 INTRODUCTION
The Kubernetes container orchestration system [9] can automate
and assist in managing many aspects of application deployment,
such as scheduling containers to cluster nodes, handling failures,
and scaling. In addition, it can expose storage resources to applica-
tions through a volume abstraction, enabling application pods—sets
of one or more containers that run as a unit—to access those re-
sources uniformly via a file system or block device interface regard-
less of the storage system that underlies them. This requires that
a corresponding provisioner, which implements the lifecycle and
behavior of volumes backed by that storage system, be available.

Kubernetes includes built-in provisioners for several storage
systems such as Ceph [13] and Gluster [3], and others may be added
by implementing the Container Storage Interface (CSI) [10, 12],
which standardizes the interaction between container orchestration

WoC ’21, December 6, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Seventh International
Workshop on Container Technologies and Container Clouds (WoC ’21), December 6, 2021,
Virtual Event, Canada, https://doi.org/10.1145/3493649.3493653.

systems and providers of storage resources. However, fully and
correctly implementing the CSI specification can take significant
effort, typically requiring the construction of two gRPC [5] servers
and the deployment of components across all cluster nodes.

In addition, Kubernetes’ ability to orchestrate more elaborate
storage stacks is limited. For instance, to ensure that data is en-
crypted at rest, encryption capabilities must either be built into
all application containers or supported by every employed storage
system and provisioner. This lack of modularity manifests further
when there is a need to combine several storage functionalities (e.g.,
applying both encryption and compression to a volume), leading
to increased development effort and hampering the adaptability of
the storage infrastructure to the needs of the applications.

We thus propose Pods-as-Volumes (PaV), a Kubernetes plugin
that simplifies the implementation of volume provisioners. PaV
enables users to specify through templates of pod definitions the
logic for creating, deleting, and exposing volumes to applications.
Pods are then created and run from those templates automatically
to perform the corresponding actions. By introducing this approach,
and compared to the alternative of manually implementing the CSI
specification and deploying all necessary components, PaV signifi-
cantly reduces the effort required to integrate storage systems into
Kubernetes. We demonstrate this with a fully-functional integra-
tion of the Google Cloud Storage [4] service, amounting to only
62 lines of YAML and requiring no coding (§ 4.1).

Further, PaV enables the straightforward implementation of mid-
dleware components that may be placed in between volumes and
application pods, and which are themselves exposed as volumes.
We showcase this with a 70-line, transparent encryption layer that
relies on the cryptsetup disk encryption tool [1] and can be applied
to existing volumes regardless of whether their underlying storage
systems and provisioners support encryption (§ 4.2). Several mid-
dleware components of this kind may be stacked to build complex
storage architectures. PaV thus enables Kubernetes to orchestrate
and manage the storage infrastructure that applications require
with greater modularity and adaptability to their needs. PaV is
available as an open-source project at:

https://github.com/albertofaria/pav

2 BACKGROUND
Kubernetes [9] is a container orchestration system for automating
the deployment and management of applications, enabling their
components to be defined and configured declaratively as objects,
most commonly using the YAML data serialization language. Ku-
bernetes reacts to the creation of these objects by instantiating and
managing containers and other resources in order to match the
desired configuration.

Pods. Objects can be of several types, or kinds. Each object is
identified by a name, and objects of most kinds are partitioned into

https://doi.org/10.1145/3493649.3493653
https://doi.org/10.1145/3493649.3493653
https://github.com/albertofaria/pav

WoC ’21, December 6, 2021, Virtual Event, Canada Alberto Faria, Ricardo Macedo, and João Paulo

namespaces. The most fundamental kind is the Pod. A pod is a set of
one or more containers. When a Pod object is created, Kubernetes
schedules those containers to run together on a single node in the
cluster. In practice, container deployments are configured using
higher-level objects that internally manage Pod objects. An example
are Deployment objects, which combine the definition of a pod with
a replication factor. When a Deployment is created, a corresponding
number of underlying Pod objects are also created automatically.
Further, whenever one of the pods fails (e.g., due to a container
crash), its object is deleted and a new one is created to restore the
desired replication factor.

Volumes. In addition to containers, Kubernetes can manage per-
sistent storage resources through the volume abstraction. A volume
corresponds to a file system or block device, and can be accessed
by containers in pods.

To allocate a volume, one creates a PersistentVolumeClaim
(PVC) object specifying certain desired properties of the volume (e.g.,
its minimum capacity) and referencing an existing StorageClass
object. The latter in turn identifies and configures the provisioner
that will be used to allocate the volume. Kubernetes has several
built-in provisioners that rely on storage systems such as Ceph [13]
and Gluster [3] to obtain storage resources. Once the volume is
allocated, a PersistentVolume object representing it is created
and bound to the PVC, from which point the volume may be used
by pods. This process is known as dynamic provisioning.

A user may also statically provision a volume by creating the
PersistentVolume object manually, in which case no automated
resource allocation is performed for the volume.

Container Storage Interface. It may be desirable to add new vol-
ume provisioners to a Kubernetes cluster, for instance to leverage a
storage system for which there is no built-in support. Provisioners
can be created by implementing the Container Storage Interface
(CSI) [10, 12], a gRPC [5] interface that standardizes the interaction
between container orchestration systems and providers of storage
resources. Such an implementation is termed a CSI plugin and typi-
cally consists of two gRPC servers: (1) the controller plugin, which
runs as a single instance in the cluster and manages volume cre-
ation and deletion; and (2) the node plugin, deployed on every node
and responsible for making volumes available to pods.

However, in addition to requiring the deployment of components
across all nodes of a cluster, fully and correctly implementing the
CSI specification can take significant effort. One particular difficulty
arises with regard to error handling and cleanup when CSI plugin
components fail during interaction with Kubernetes, and will be
detailed further ahead in the context of PaV’s implementation,
which relies on CSI.

3 DESIGN AND IMPLEMENTATION
We present PaV, which simplifies the creation of volume provision-
ers by allowing all logic underlying volume allocation and behavior
to be specified as templates of pod definitions. Pods are then instan-
tiated from those templates and run automatically when needed.
By introducing and building upon this concept, PaV is able to en-
capsulate the intricacies of the CSI specification. In this section, we
describe how PaV is used, its architecture, and its implementation.

1 apiVersion: pav.albertofaria.github.io/v1alpha1
2 kind: PavProvisioner
3 metadata: (...)
4 spec:
5 provisioningModes: list containing Dynamic and/or Static
6 volumeValidation:
7 volumeModes: list containing Filesystem (default) and/or Block
8 accessModes: list containing ReadWriteOnce, ReadOnlyMany,
9 and/or ReadWriteMany (default is all three)
10 minCapacity: numeric, possibly suffixed (default is no minimum)
11 maxCapacity: numeric, possibly suffixed (default is no maximum)
12 podTemplate: pod definition
13 volumeCreation:
14 volumeHandle: string
15 capacity: numeric, possibly suffixed
16 podTemplate: pod definition
17 volumeDeletion:
18 podTemplate: pod definition
19 volumeStaging:
20 podTemplate: pod definition
21 volumeUnstaging:
22 podTemplate: pod definition

Figure 1: Schema for PavProvisioner objects.

3.1 PavProvisioner
Volume provisioners are implemented using PaV by creating objects
of the PavProvisioner kind, which becomes available when PaV
is installed on a Kubernetes cluster. Each such object gives rise to a
provisioner, and the aforementioned pod templates are specified
directly in its definition.

Figure 1 depicts the schema for PavProvisioner objects. Briefly,
one may specify templates of pods for validating the configuration
of a volume to be provisioned (line 12), for creating and deleting
a volume as part of dynamic provisioning (lines 16 and 18), and
for staging a created volume—the action of making it available for
use by a given client pod—and subsequently unstaging it (lines 20
and 22). When any these actions is requested, a pod is instantiated
from the appropriate template and run automatically by PaV to
perform all necessary work. For brevity, we omit discussion of other
PavProvisioner fields. Two example PavProvisioner definitions
are reproduced and explained in § 4.

3.2 Architecture
PaV is comprised of two main components: an agent and a CSI
plugin. The agent is deployed once per cluster, and its first respon-
sibility is monitoring PavProvisioner objects. For each created
PavProvisioner, it deploys an instance of the CSI plugin, which
implements the provisioner in question.

The agent is divided into two subcomponents: the controller agent
and the node agent. The first runs as a single pod in the cluster, and
the second is deployed on all nodes. The CSI plugin is similarly split
into a CSI controller plugin and CSI node plugin, which are deployed
for each PavProvisioner object in the same fashion as the agent.
This is exemplified in Figure 2, which depicts a PaV deployment
on a two-node cluster in which a single PavProvisioner exists.
The controller agent happened to be scheduled to node A, and the
PavProvisioner’s CSI controller plugin to node B.

Both the agent and CSI plugin are implemented in the Python
language and packaged as a single container image. Asynchro-
nous I/O is used in lieu of multithreading for improved resource

Pods-as-Volumes: Effortlessly Integrating Storage Systems and Middleware into Kubernetes WoC ’21, December 6, 2021, Virtual Event, Canada

Node B

➋➎

Client pod
➍

➌➊
PVC

➄

➁ ➂

➃
➀

CSI controller
plugin pod

Node
agent pod

CSI node
plugin pod

Node A

Controller
agent pod

CSI node
plugin pod

Node
agent pod

Figure 2: Agent and CSI plugin components of a PaV deploy-
ment in a 2-node cluster with a single PavProvisioner object.
Also represented are a PVC and a Pod that uses it.

consumption, and the agent relies on the kopf framework [8] to
monitor objects.

3.3 Workflow
The components enumerated above work in tandem to implement
the functionality of each volume provisioner defined by PavProvi-
sioner objects. Here, we illustrate the interactions between users,
Kubernetes, agent, and CSI plugins by describing the steps involved
in creating and staging volumes, under the scenario in Figure 2.

Volume creation. The dynamic provisioning of a volume by a
PavProvisioner begins when a user creates a PVC object that ul-
timately references that provisioner (➀). Kubernetes reacts to the
creation of such an object by performing a Remote Procedure Call
(RPC) on the appropriate CSI controller plugin, instructing it to
create a volume.

Instead of directly taking action to create the volume, the CSI
controller plugin then encodes Kubernetes’ request under specific
annotations—arbitrary key-value pair metadata that may be at-
tached to any Kubernetes object—on the PVC that initially triggered
provisioning (➁). PaV’s controller agent monitors PVC objects for
such annotations, and detects the request to create a volume, taking
on that burden (➂).

After validating the requested volume configuration, the con-
troller agent instantiates and runs the volume creation pod (not de-
picted in the figure) defined in the PavProvisioner. It then waits
until this pod terminates, and encodes information about its success
or failure under other annotations on the same PVC object (➃). The
CSI controller plugin, still in the context of the aforementioned
RPC call, notices this and returns that information back to Kuber-
netes (➄). Upon success, a PersistentVolume object representing
the volume is then created and bound to the PVC.

Volume creation work is delegated from the CSI controller plugin
to the controller agent to ensure that error handling and cleanup is
performed under certain failure scenarios. Consider, for instance,
that the CSI controller plugin fails immediately prior to returning
an indication of successful volume creation to Kubernetes. In this

case, persistent resources backing the volume have already been
allocated, but Kubernetes is not aware of this fact and there is no
guarantee that it will retry the RPC or even perform a cleanup RPC.

To guarantee that resources are not leaked, PaV thus stores infor-
mation about the volume creation process in the annotations of PVC
objects. These objects are then continuously monitored, and when
they are being deleted, their annotations are checked to determine
whether the volume creation pod has been run for the correspond-
ing volume. If it has, PaV then instantiates the PavProvisioner’s
volume deletion pod to free any resources that may have been allo-
cated. While each PavProvisioner’s CSI controller plugin could
perform this monitoring, it is less resource-intensive to have a sin-
gle component doing so, and thus this responsibility is transferred
to the controller agent. The task of performing volume creation is
then also delegated to it for symmetry.

Volume staging. Figure 2 also depicts a client Pod that requests
access to a volume of the PavProvisioner by referencing its PVC
object, and that was scheduled to node B (➊). Before starting the
containers in the pod, Kubernetes performs an RPC on the PavPro-
visioner’s CSI node plugin instance running on node B, instructing
it to stage the volume.

Analogously to volume creation, the CSI node plugin encodes
Kubernetes’ request as annotations on the client Pod (➋). The node
agent on the same node notices this (➌) and instantiates the volume
staging pod (not depicted in the figure). A dedicated directory from
the host is mounted at path /pav in all containers of this pod, which
must make the volume available as a directory or block special
file at /pav/volume. Information about the staging pod’s success
or failure is then recorded in the client Pod (➍), and relayed to
Kubernetes by the CSI node plugin (➎). Upon success, Kubernetes
retrieves the volume from the aforementioned host directory and
exposes it to the client pod, which finally begins execution.

The task of running the volume staging pod is delegated to the
node agent for the same reasons as for volume creation. The node
agent is similarly responsible for running the volume unstaging pod
under failure scenarios that cause Kubernetes not to request so, and
accomplishes this by monitoring the deletion of Pod objects.

3.4 Discussion
As explained, PaV introduces and builds upon the concept of speci-
fying the logic underlying the allocation and behavior of volumes
as pod templates, which are then instantiated as needed to create,
delete, stage, and unstage volumes. It should be clear from the de-
scription above that directly implementing the CSI specification
requires the creation of various components, and can involve many
intricacies related to error handling and cleanup due to the possibil-
ity of those components failing during interaction with Kubernetes.
In contrast, creating a single PavProvisioner object is sufficient
to implement a volume provisioner, and PaV provides the clear-cut
guarantee that all runs of the volume creation (staging) pod are
eventually succeeded by a run of the volume deletion (unstaging)
pod, even when they fail.

Note that since PaV simply orchestrates the lifecycle of volumes,
not interacting with storage components while they are in use by
application pods, it does not incur overhead on volume performance.
However, since the creation, deletion, staging, and unstaging of

WoC ’21, December 6, 2021, Virtual Event, Canada Alberto Faria, Ricardo Macedo, and João Paulo

volumes require additional pods to be run, these steps are subject to
the delay between the creation of a Pod and the start of its execution.
This is typically in the order of a few seconds but varies between
clusters. Nonetheless, since Kubernetes applications are generally
long-running, this additional latency is often insignificant.

4 USE CASES
Having described PaV’s design and implementation, we nowpresent
two example use cases that showcase its applicability and ease of
use: an integration of Google Cloud Storage into Kubernetes, and a
transparent middleware component that adds encryption capabili-
ties to existing volumes.

4.1 Google Cloud Storage
Google Cloud Storage (GCS) [4] is an object storage service. Objects
are organized into buckets, and libraries for several languages are
provided to access them. A gcsfuse tool [2] is also provided to expose
buckets through the POSIX file system interface, presenting objects
as files and enabling file-based applications to use GCS. However,
Kubernetes has no support for exposing GCS buckets as volumes,
and we thus implement this capability using PaV.

Figure 3 reproduces the complete definition1 of a PavProvi-
sioner implementing a fully-functional integration of GCS into Ku-
bernetes. It supports both dynamic and static provisioning (line 5),
with each volume corresponding to a bucket. Note that several
string fields of the pod templates include expressions enclosed in
{{ ... }} (e.g., line 9). These are evaluated using the Jinja templating
engine [7] and replaced with the evaluation result each time those
pods are instantiated. Such expressions have access to information
about the volume being managed and to the state of relevant objects
such as the corresponding PVC and StorageClass, allowing pod
definitions to be customized to each particular volume.

Using the provisioner. Volumes can be dynamically provisioned
by creating PVC objects referencing a StorageClass that in turn
references the PavProvisioner. The GCS service account key, re-
quired to manage and access buckets, must be stored in a Secret—
an object intended to hold sensitive data in a key-value mapping—
under key key. This Secretmust then be identified through param-
eters secretName and secretNamespace specified in the Storage-
Class. Additionally, the GCS project in which to create buckets
must be identified through parameter projectId. These parame-
ters are available in Jinja expressions under variable params (e.g.,
line 9). Note that different StorageClass objects can use different
GCS accounts and projects.

Volume creation and deletion. The volume creation pod (lines 8–
28) relies on a container image packaging the gsutil bucket man-
agement tool [6], and mounts the aforementioned secret so that the
GCS key is exposed to the container as file /secret/key (lines 23–
28). It invokes gsutil to create a bucket whose name corresponds to
the volume handle—a string that identifies the volume. The bucket’s
geographical location (passed on to gsutil using flag -l) is config-
urable through a location parameter on the StorageClass, and
defaults to “US” (line 21). Other bucket properties could easily be

1YAML anchors are used to avoid repetition: &label labels a value and *label reuses
that value; <<: *label allows overriding fields in mappings.

1 apiVersion: pav.albertofaria.github.io/v1alpha1
2 kind: PavProvisioner
3 metadata: { name: gcs-provisioner }
4 spec:
5 provisioningModes: [Dynamic, Static]
6 volumeCreation:
7 capacity: 1Ei
8 podTemplate:
9 metadata: { namespace: "{{params.secretNamespace}}" }
10 spec: &gsutil-pod-spec
11 restartPolicy: Never
12 containers:
13 - &gsutil-container
14 name: gsutil
15 image: albertofaria/gsutil:5.2
16 command: [gsutil, -o,
17 Credentials:gs_service_key_file=/secret/key,
18 -o, "GSUtil:default_project_id={{
19 params.projectId }}"]
20 args: [mb, -b, "on",
21 -l, "{{ params.location or 'US' }}",
22 "gs://{{ defaultVolumeHandle }}"]
23 volumeMounts:
24 - { name: secret, mountPath: /secret }
25 volumes:
26 - &secret-volume
27 name: secret
28 secret: { secretName: "{{params.secretName}}" }
29 volumeDeletion:
30 podTemplate:
31 metadata: { namespace: "{{params.secretNamespace}}" }
32 spec:
33 <<: *gsutil-pod-spec
34 containers:
35 - <<: *gsutil-container
36 args: [rm, -r, "gs://{{ volumeHandle }}"]
37 volumeStaging:
38 podTemplate:
39 metadata: { namespace: "{{params.secretNamespace}}" }
40 spec:
41 restartPolicy: Never
42 containers:
43 - name: gcsfuse
44 image: albertofaria/gcsfuse:0.36.0
45 command: [/bin/bash, -c]
46 args:
47 - |
48 mkdir /pav/volume &&
49 gcsfuse -o=allow_other \
50 --key-file=/secret/key --dir-mode=777 \
51 --temp-dir=/temp --file-mode=666 \
52 --stat-cache-ttl=0 --type-cache-ttl=0 \
53 {{ volumeHandle|tobash }} /pav/volume &&
54 touch /pav/ready &&
55 sleep infinity
56 securityContext: { privileged: true }
57 volumeMounts:
58 - { name: secret, mountPath: /secret }
59 - { name: temp, mountPath: /temp }
60 volumes:
61 - *secret-volume
62 - { name: temp, emptyDir: {} }

Figure 3: Google Cloud Storage integration.

Pods-as-Volumes: Effortlessly Integrating Storage Systems and Middleware into Kubernetes WoC ’21, December 6, 2021, Virtual Event, Canada

1 apiVersion: pav.albertofaria.github.io/v1alpha1
2 kind: PavProvisioner
3 metadata: { name: crypt-provisioner }
4 spec:
5 provisioningModes: [Dynamic]
6 volumeValidation: { volumeModes: [Block] }
7 volumeCreation:
8 podTemplate:
9 metadata: { namespace: "{{pvc.metadata.namespace}}" }
10 spec: &cryptsetup-pod-spec
11 restartPolicy: Never
12 containers:
13 - &cryptsetup-container
14 name: cryptsetup
15 image: albertofaria/cryptsetup:2.4.1
16 command: [/bin/bash, -c]
17 args:
18 - |
19 set -o errexit -o pipefail
20 cryptsetup -q luksFormat \
21 /volume /secret/passphrase
22 size="$(blockdev --getsize64 /volume)"
23 offset="$(cryptsetup luksDump \
24 /volume --dump-json-metadata |
25 jq '.segments."0".offset' | tr -d '"')"
26 echo "$((size - offset))" > /pav/capacity
27 securityContext: { privileged: true }
28 volumeMounts:
29 - { name: secret, mountPath: /secret }
30 volumeDevices:
31 - { name: underlying, mountPath: /volume }
32 volumes:
33 - name: secret
34 secret:
35 secretName: "{{ pvc.metadata.annotations[
36 'crypt/secretName'] }}"
37 - name: underlying
38 persistentVolumeClaim:
39 claimName: "{{ pvc.metadata.annotations[
40 'crypt/underlyingClaimName'] }}"
41 volumeDeletion:
42 podTemplate:
43 metadata: { namespace: "{{pvc.metadata.namespace}}" }
44 spec:
45 <<: *cryptsetup-pod-spec
46 containers:
47 - <<: *cryptsetup-container
48 args: [cryptsetup -q erase /volume]
49 volumeStaging:
50 podTemplate:
51 metadata: { namespace: "{{pvc.metadata.namespace}}" }
52 spec:
53 <<: *cryptsetup-pod-spec
54 containers:
55 - <<: *cryptsetup-container
56 args:
57 - |
58 dev={{ volumeHandle|tobash }} &&
59 cryptsetup open /volume "$dev" \
60 --key-file /secret/passphrase &&
61 cp -p "/dev/mapper/$dev" /pav/volume
62 volumeUnstaging:
63 podTemplate:
64 metadata: { namespace: "{{pvc.metadata.namespace}}" }
65 spec:
66 <<: *cryptsetup-pod-spec
67 containers:
68 - <<: *cryptsetup-container
69 args: ["cryptsetup close
70 {{ volumeHandle|tobash }} || (($? == 4))"]

Figure 4: Transparent encryption middleware.

made configurable by introducingmore parameters. Conversely, the
volume deletion pod (lines 30–36) removes the bucket underlying a
dynamically provisioned volume when its PVC is deleted.

Volume staging. The volume staging pod (lines 38–62) uses an im-
age packaging gcsfuse, and mounts both the aforementioned secret
and a temporary directory to be used as scratch space (lines 57–62).
It invokes gcsfuse with several parameters including the name of
the bucket underlying the volume, which corresponds to the vol-
ume handle. gcsfuse then mounts the bucket at /pav/volume and
launches a daemon process backing the file system. Since the dae-
mon must continue running while the client pod uses the volume,
the container then creates a file at /pav/ready to indicate to PaV
that the volume is ready, and sleeps until it is terminated.

4.2 Transparent Encryption
Kubernetes’ volume abstraction enables storage resources to be
represented as objects, and allows application pods to use those
resources uniformly regardless of the storage infrastructure that
underlies them. However, Kubernetes’ ability to build and manage
that infrastructure itself is more limited. As a concrete example,
no general mechanism is offered to enable volume encryption. In-
stead, to ensure that data stored in a volume is encrypted, this
functionality must either be built into all pods that use the volume
or implemented by all employed volume provisioners. This lack
of modularity leads to increased development effort and hampers
the adaptability of the storage infrastructure to the needs of the
applications.

We thus use PaV to create a middleware component that relies
on the cryptsetup disk encryption tool [1] to add encryption capa-
bilities to any existing block volume transparently. The complete
definition of the PavProvisioner implementing this is reproduced
in Figure 4. Briefly, it enables the dynamic provisioning (line 5)
of volumes that act as a transparent encryption layer for other
existing volumes. Pods can then use the new volumes, and all writ-
ten (read) data is automatically encrypted to (decrypted from) the
underlying volumes. Since cryptsetup is limited to block devices,
the provisioner only supports block volumes (line 6). Support for
file system volumes could be added using stackable, encrypting file
systems such as eCryptfs [11].

Using the provisioner. To add encryption capabilities to an exist-
ing block volume, the passphrase for encryption must first be stored
in a Secret under key passphrase. Then, one creates a PVCwith an-
notations crypt/secretName and crypt/underlyingClaimName
set to the names of the Secret and of the PVC corresponding to
the existing underlying volume, respectively, and referencing a
StorageClass that in turn references the PavProvisioner. These
annotations are retrieved in Jinja expressions from the mapping
pvc.metadata.annotations (e.g., lines 35–36). The Secret and
both PVC objects must all exist in the same namespace.

Volume creation and deletion. The creation of the PVC triggers the
volume creation pod (lines 8–40), which mounts both the secret and
the underlying volume (lines 28–40) and begins by formatting the
latter using cryptsetup (lines 20–21). Since this marginally decreases
the volume’s capacity due to the addition of a metadata header, the
pod computes the new capacity and exposes it to PaV by writing

WoC ’21, December 6, 2021, Virtual Event, Canada Alberto Faria, Ricardo Macedo, and João Paulo

it to file /pav/capacity (lines 22–26). The contents of encrypted
volumes are erased by the volume deletion pod (lines 42–48) when
the PVC is deleted.

Volume staging and unstaging. The volume staging pod (lines 50–
61) mounts the underlying volume and uses cryptsetup to create a
block device that provides unencrypted access to it (lines 59–60). It
then copies the resulting block special file to /pav/volume (line 61)
and terminates, as all encryption and decryption is handled by the
kernel without the need for a daemon process. It is thus unnecessary
to create the /pav/ready file. Finally, the volume unstaging pod
(lines 63–70) undoes this process.

Discussion. The technique showcased here can be applied to
build reusable, transparent middleware components implementing
many other storage functionalities, such as compression, caching,
or tracing. It may also be generalized to accept more than one under-
lying volume, enabling the creation of replication or load-balancing
layers. By stacking several such components, complex and modular
storage architectures can be represented directly as interconnected
objects and managed more effectively with Kubernetes.

5 CONCLUSION AND FUTUREWORK
Wepresent PaV, a Kubernetes plugin that simplifies the construction
of volume provisioners. Procedures for creating, deleting, staging,
and unstaging volumes are specified as pod templates, which are
then instantiated as needed. Compared to the alternative of man-
ually implementing the CSI interface and deploying all necessary
components, PaV significantly reduces the effort required to in-
tegrate storage systems into Kubernetes. Further, it enables the
straightforward creation of storage middleware components, im-
proving modularity and unlocking the ability to build advanced
storage stacks and architectures using Kubernetes.

We plan to extend PaV’s functionality to further broaden its
applicability. Examples include the ability to create volume snap-
shots, enabling the creation of other volumes from those snapshots;
support for volume expansion, which allows the capacity of exist-
ing volumes to be increased; and specifying volume accessibility
constraints, restricting the set of nodes to which pods that use the
volumes may be scheduled.

ACKNOWLEDGMENTS
This workwas supported by project BigHPC (POCI-01-0247-FEDER-
045924), funded by the European Regional Development Fund
(ERDF) through the Operational Programme for Competitiveness
and Internationalization (COMPETE 2020) and by National Funds
through the Portuguese Foundation for Science and Technology
(FCT), I.P. in the scope of the UT Austin Portugal Program; and
supported by FCT through PhD Fellowship SFRH/BD/146059/2019.

REFERENCES
[1] [n.d.]. cryptsetup. https://gitlab.com/cryptsetup/cryptsetup
[2] [n.d.]. gcsfuse. https://github.com/GoogleCloudPlatform/gcsfuse
[3] [n.d.]. Gluster. https://www.gluster.org
[4] [n.d.]. Google Cloud Storage. https://cloud.google.com/storage
[5] [n.d.]. gRPC. https://grpc.io
[6] [n.d.]. gsutil. https://github.com/GoogleCloudPlatform/gsutil
[7] [n.d.]. Jinja. https://palletsprojects.com/p/jinja
[8] [n.d.]. kopf. https://github.com/nolar/kopf
[9] [n.d.]. Kubernetes. https://kubernetes.io
[10] 2021. Container Storage Interface (CSI) specification version 1.5.0. https://github.c

om/container-storage-interface/spec/blob/v1.5.0/spec.md
[11] Michael Halcrow. 2005. eCryptfs: An Enterprise-class Encrypted Filesystem for

Linux. In Proceedings of the 2005 Linux Symposium.
[12] Gerry Seidman. 2020. Understanding Kubernetes Storage: Getting in Deep by

Writing a CSI Driver. In Vault ’20. USENIX Association.
[13] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. 2006. Ceph: A Scalable, High-Performance Distributed File System. In
Proceedings of the 7th Symposium onOperating Systems Design and Implementation.
USENIX Association.

https://gitlab.com/cryptsetup/cryptsetup
https://github.com/GoogleCloudPlatform/gcsfuse
https://www.gluster.org
https://cloud.google.com/storage
https://grpc.io
https://github.com/GoogleCloudPlatform/gsutil
https://palletsprojects.com/p/jinja
https://github.com/nolar/kopf
https://kubernetes.io
https://github.com/container-storage-interface/spec/blob/v1.5.0/spec.md
https://github.com/container-storage-interface/spec/blob/v1.5.0/spec.md

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 PavProvisioner
	3.2 Architecture
	3.3 Workflow
	3.4 Discussion

	4 Use Cases
	4.1 Google Cloud Storage
	4.2 Transparent Encryption

	5 Conclusion and Future Work
	Acknowledgments
	References

