

Accelerating Deep Learning Training Through Transparent Storage Tiering

Marco Dantas, Diogo Leitão, Peter Cui¹, Ricardo Macedo, Xinlian Liu², Weijia Xu¹, João Paulo

INESC TEC & University of Minho¹ University of Texas at Austin² Hood College

IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

May 17, 2022

DL and HPC Convergence

- Deep Learning (DL)
 - New models and predictions for
 - Healthcare, finance, natural sciences, ...
 - Computational demanding workloads
 - Large datasets

- DL workloads can leverage the computational power offered by HPC!
- Is the same true for HPC's storage resources?

DL Model Training

- From the Storage I/O perspective
 - Datasets composed by **millions** of small files (order of KiBs)
 - Optimized data formats (order of MiBs) e.g., TFRecord
 - Read-oriented workload
 - Trained model's accuracy
 - **Epochs:** Full dataset is read at each training epoch

DL Model Training

- From the Storage I/O perspective
 - Datasets composed by **millions** of small files (order of KiBs)
 - Optimized data formats (order of MiBs) e.g., TFRecord
 - Read-oriented workload
 - Trained model's accuracy
 - **Epochs:** Full dataset is read at each training epoch
 - Shuffling: Random I/O accesses across epochs

The Storage Bottleneck Problem

- "Bad" data-centric I/O workloads
 - Metadata-intensive due to small files
 - Hard to cache due to random accesses
- Parallel File System (PFS)
 - Competition for shared storage resources
 - Can lead to performance variability or even unavailability!

Solution: Use Local Storage?

- Caching data at compute node's local storage
 - **Reduces I/O pressure** at the PFS
 - Improves DL training speed for I/O-bound workloads

Average training time (3 epochs) for LeNet and AlexNet models with the ImageNet dataset (100 GiB) being read from Lustre and Local disk

Challenges

- Users may not be aware of local disks
- Manually copying data to the local disk is challenging
 - The dataset may not fit entirely at the local disk
- The solution must be **portable** for different DL frameworks
 - **Non-intrusive** i.e., avoids changing the framework's source-code
 - Tuned for DL I/O workloads

Contributions

- Monarch
 - Transparent and portable storage tiering optimized for DL workloads
 - **Compatible** with **I/O optimizations** implemented at existing DL frameworks
 - Caching, sample-based prefetching, optimized data formats
- Prototype and experimental validation
 - Integration with PyTorch and TensorFlow, without any code changes
 - Experimental validation with different dataset sizes and DL models

Monarch

Storage Hierarchy

- Layered design $(L_{1 \text{ to } N})$
 - \circ L_{1 to N-1}: data caching
 - L_N: full dataset (read-only)
 - Organized by different criteria (e.g., performance, energy)
- Each layer includes
 - Storage driver modular plugin abstracting different backends
 - Storage quota tracks available storage space

Placement Handler

- **Background** data fetching and caching
- **Prefetching** for large files (e.g., TFRecords)

Metadata Container

- Enables **transparent** tiering
- Unified logical view of storage resources for DL frameworks
 - \circ $\;$ Avoids modifying existing frameworks $\;$
- **Translation** of **logical** to **physical** storage resources
 - File paths and descriptors

Flow of I/O Requests

DL framework			
training file ₁	•••	training file _{N-1}	training file N

Parallel File System

Local File System

Data is Stored at L_N

Background Data Placement

Background Data Placement

Background Data Placement

Subsequent I/O Requests

Next Epoch - Data is Cached at L₁

Experimental Evaluation

- Frontera compute node with 2x 16-core Intel Xeon processors, 4x
 Nvidia Quadro, 68 GiB of RAM, and a 119 GiB SSD disk partition¹
- Dataset, workloads and setups²
 - ImageNet-1 dataset with 200 GiB (TFRecords)
 - LeNet, AlexNet (I/O-bound) and ResNet-50 (compute-bound) models
 - **TensorFlow** and **PyTorch + DALI** (caching and prefetching enabled)
 - Lustre: data is read from the PFS (without using Monarch)
 - Monarch: storage tiering (local disk + PFS) is enabled by Monarch

Results for other dataset sizes, workloads and setups can be checked at the paper

¹ RAM and disk space were limited to ensure that the 200 GiB ImageNet-1 dataset cannot be fully cached

Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

With Monarch:

- Training time is reduced by **28%** for LeNet (-13 min)
- Training time is reduced by **21%** for AlexNet (-12.5 min)

Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

With Monarch:

- Training time is reduced by **28%** for LeNet (-13 min)
- Training time is reduced by **21%** for AlexNet (-12.5 min)
- Training time is similar for ResNet50 (compute-bound)

Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

SLab

With Monarch:

- Training time is reduced by **28%** for LeNet (-13 min)
- Training time is reduced by **21%** for AlexNet (-12.5 min)
- Training time is similar for ResNet50 (compute-bound)

With Monarch:

- Training time is reduced by 28% for LeNet (-13 min)
- Training time is reduced by **21%** for AlexNet (-12.5 min)
- Training time is similar for ResNet50 (compute-bound)

With Monarch:

- Training time is reduced by 28% for LeNet (-13 min)
- Training time is reduced by **21%** for AlexNet (-12.5 min)
- Training time is similar for ResNet50 (compute-bound)

SLab

With Monarch:

- Training time is reduced by 28% for LeNet (-13 min)
- Training time is reduced by **21%** for AlexNet (-12.5 min)
- Training time is similar for ResNet50 (compute-bound)

- With Monarch, for LeNet and AlexNet models:
- 1. Improved performance due to Monarch's file prefetching (better usage of the local page cache)
- Similar performance when the page cache becomes full
- Better performance for the second and third training epochs

With Monarch:

- Training time is reduced by 28% for LeNet (-13 min)
- Training time is reduced by **21%** for AlexNet (-12.5 min)
- Training time is similar for ResNet50 (compute-bound)

PFS's read operations by Lustre and Monarch

PFS's metadata (open + close) operations by Lustre and Monarch

Accelerating Deep Learning Training Through Transparent Storage Tiering

PFS's read operations by Lustre and Monarch

With Monarch:

- 1. PFS read operations reduced by up to **56%**
- 2. Prefetching reduces number of reads at first epoch

PFS's read operations by Lustre and Monarch

With Monarch:

- 1. PFS read operations reduced by up to 56%
- 2. Prefetching reduces number of reads at first epoch

PFS's metadata (open + close) operations by Lustre and Monarch

With Monarch:

- 1. PFS open + close operations reduced by up to **38%**
- 2. Same number of operations for the first training epoch

Accelerating Deep Learning Training Through Transparent Storage Tiering

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

1. In 48 hours, **Lustre** runs **48 epochs** and achieves **37%** and **61%** for top-1 and top-5 accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

- 1. In 48 hours, **Lustre** runs **48 epochs** and achieves **37%** and **61%** for top-1 and top-5 accuracy
- 2. Monarch completes the same number of epochs (48) and achieves similar accuracy in 28 hours

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

- 1. In 48 hours, **Lustre** runs **48 epochs** and achieves **37%** and **61%** for top-1 and top-5 accuracy
- 2. Monarch completes the same number of epochs (48) and achieves similar accuracy in 28 hours
- 3. In 48 hours, **Monarch** runs **81 epochs** and achieves **51%** and **75%** for top-1 and top-5 accuracy

Conclusions

- Monarch, storage tiering for DL workloads running on HPC centers
 - Transparent to users
 - **Applicable** to different DL frameworks
 - **Optimized** for DL I/O patterns and large datasets
- TensorFlow and PyTorch training time **reduced** by up to **28%** and **37%**
- Number of I/O operations at the PFS reduced by up to 56%
- Open-sourced at https://github.com/dsrhaslab/monarch

Accelerating Deep Learning Training Through Transparent Storage Tiering

Marco Dantas, Diogo Leitão, Peter Cui¹, Ricardo Macedo, Xinlian Liu², Weijia Xu¹, João Paulo

INESC TEC & University of Minho¹ University of Texas at Austin² Hood College

IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

May 17, 2022

