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DL and HPC Convergence

● Deep Learning (DL)

○ New models and predictions for

■ Healthcare, finance, natural sciences, …

○ Computational demanding workloads

○ Large datasets

● DL workloads can leverage the computational power offered by HPC!

● Is the same true for HPC’s storage resources?
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DL Model Training

● From the Storage I/O perspective

○ Datasets composed by millions of small files (order of KiBs) 

■ Optimized data formats (order of MiBs)
e.g., TFRecord

○ Read-oriented workload

○ Trained model’s accuracy

■ Epochs: Full dataset is read at each training epoch

3

1st training epoch
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DL Model Training

● From the Storage I/O perspective

○ Datasets composed by millions of small files (order of KiBs) 

■ Optimized data formats (order of MiBs)
e.g., TFRecord

○ Read-oriented workload

○ Trained model’s accuracy

■ Epochs: Full dataset is read at each training epoch

■ Shuffling: Random I/O accesses across epochs
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2nd training epoch
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The Storage Bottleneck Problem

● ”Bad” data-centric I/O workloads

○ Metadata-intensive due to small files

○ Hard to cache due to random accesses

● Parallel File System (PFS)

○ Competition for shared storage resources 

○ Can lead to performance variability or even unavailability!
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Solution: Use Local Storage?
● Caching data at compute node’s local storage

○ Reduces I/O pressure at the PFS

○ Improves DL training speed for I/O-bound workloads
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-48%
-20%

Average training time (3 epochs)  for LeNet and AlexNet models with the 
ImageNet dataset (100 GiB) being read from Lustre and Local disk
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Challenges
● Users may not be aware of local disks

● Manually copying data to the local disk is challenging

○ The dataset may not fit entirely at the local disk

● The solution must be portable for different DL frameworks

○ Non-intrusive - i.e., avoids changing the framework’s source-code

○ Tuned for DL I/O workloads
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Contributions
● Monarch

○ Transparent and portable storage tiering optimized for DL workloads

○ Compatible with I/O optimizations implemented at existing DL frameworks

■ Caching, sample-based prefetching, optimized data formats

● Prototype and experimental validation

○ Integration with PyTorch and TensorFlow, without any code changes 

○ Experimental validation with different dataset sizes and DL models
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Monarch

1LD_PRELOAD is used for intercepting POSIX calls 

1
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Storage Hierarchy
● Layered design (L1 to N)

○ L1 to N-1: data caching

○ LN:  full dataset (read-only)

○ Organized by different criteria
(e.g., performance, energy)

● Each layer includes

○ Storage driver – modular plugin 
abstracting different backends

○ Storage quota – tracks available
storage space

LN L1
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Placement Handler
● Placement policy

○ Defines the data to be cached and 
evicted at layers L1 to N-1

○ Monarch’s placement strategy

■ Top layers are filled first 
(i.e., until their quota is reached)

■ No eviction policy

● Thread pool

○ Background data fetching and caching

○ Prefetching for large files (e.g., TFRecords)

The full dataset is read 
for each training epoch!

Leverage local
storage resources!



Accelerating Deep Learning Training Through Transparent Storage Tiering 12

Metadata Container
● Enables transparent tiering

● Unified logical view of storage 
resources for DL frameworks

○ Avoids modifying existing frameworks

● Translation of logical to physical
storage resources

○ File paths and descriptors

Unified logical view

Physical resources
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Flow of I/O Requests
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Data is Stored at LN

(b) File’s content is at LN
(i.e., PFS)

(a) Check file’s location



Accelerating Deep Learning Training Through Transparent Storage Tiering 15

Background Data Placement

(a) Check L1 storage quota
No eviction policy
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Background Data Placement

(a) Check L1 storage quota
No eviction policy

(b) Prefetch file’s content from LN to L1
(i.e., from PFS to local FS)
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Background Data Placement

(a) Check L1 storage quota
No eviction policy

(b) Prefetch file’s content from LN to L1
(i.e., from PFS to local FS)

(c) Update metadata
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Subsequent I/O Requests

File’s content is now at L1
(i.e., Local FS)
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Next Epoch - Data is Cached at L1

(a) Check file’s location

(b) File’s content is read from L1
(i.e., Local FS)
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Experimental Evaluation
● Frontera compute node with 2x 16-core Intel Xeon processors, 4x

Nvidia Quadro, 68 GiB of RAM, and a 119 GiB SSD disk partition1

● Dataset, workloads and setups2

○ ImageNet-1 dataset with 200 GiB (TFRecords)

○ LeNet, AlexNet (I/O-bound) and ResNet-50 (compute-bound) models

○ TensorFlow and PyTorch + DALI (caching and prefetching enabled)

■ Lustre: data is read from the PFS (without using Monarch)

■ Monarch: storage tiering (local disk + PFS) is enabled by Monarch

20

1 RAM and disk space were limited to ensure that the 200 GiB ImageNet-1 dataset cannot be fully cached
2 Results for other dataset sizes, workloads and setups can be checked at the paper
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TensorFlow - 200GiB Dataset
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Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch
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TensorFlow - 200GiB Dataset
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Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

-28% -21%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
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TensorFlow - 200GiB Dataset

23

Average training time (3 epochs) when reading data from the PFS (Lustre) and with Monarch

-28% -21%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)
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Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28% -21%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

1st epoch 2nd epoch 3rd epoch
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Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching 

(better usage of the local page cache)

(1)

1st epoch 2nd epoch 3rd epoch

-21%
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Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching 

(better usage of the local page cache)
2. Similar performance when the page cache becomes full

(1) (2)

1st epoch 2nd epoch 3rd epoch

-21%
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Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching 

(better usage of the local page cache)
2. Similar performance when the page cache becomes full
3. Better performance for the second and third training epochs

(1) (2)
(3)

1st epoch 2nd epoch 3rd epoch

-21%
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Throughput, in samples per second, when reading data from the PFS (Lustre) and with Monarch

-28%
With Monarch:
• Training time is reduced by 28% for LeNet (-13 min)
• Training time is reduced by 21% for AlexNet (-12.5 min)
• Training time is similar for ResNet50 (compute-bound)

With Monarch, for LeNet and AlexNet models:
1. Improved performance due to Monarch’s file prefetching 

(better usage of the local page cache)
2. Similar performance when the page cache becomes full
3. Better performance for the second and third training epochs

For ResNet50:
• Similar throughput but less variance

1st epoch 2nd epoch 3rd epoch

-21%
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PFS’s read operations by Lustre and Monarch PFS’s metadata (open + close) operations by Lustre and Monarch

TensorFlow - 200GiB Dataset

1st epoch 2nd epoch 3rd epoch 1st epoch 2nd epoch 3rd epoch
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PFS’s read operations by Lustre and Monarch PFS’s metadata (open + close) operations by Lustre and Monarch

TensorFlow - 200GiB Dataset

1st epoch 2nd epoch 3rd epoch 1st epoch 2nd epoch 3rd epoch

With Monarch:
1. PFS read operations reduced by up to 56%
2. Prefetching reduces number of reads at first epoch 

-50%

-56%

-56%

(2)

(1)



Accelerating Deep Learning Training Through Transparent Storage Tiering

0
3
6
9

12

Ac
cu

m
ul

at
ed

 O
ps

 (x
10

3 )

Step

Lustre Monarch
LeNet

AlexNet

ResNet50
0
3
6
9

12

LeNet

AlexNet

ResNet50

0
3
6
9

12

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

31

PFS’s read operations by Lustre and Monarch PFS’s metadata (open + close) operations by Lustre and Monarch

TensorFlow - 200GiB Dataset

1st epoch 2nd epoch 3rd epoch 1st epoch 2nd epoch 3rd epoch

With Monarch:
1. PFS read operations reduced by up to 56%
2. Prefetching reduces number of reads at first epoch 

With Monarch:
1. PFS open + close operations reduced by up to 38%
2. Same number of operations for the first training epoch

-50%

-56%

-56%

(2)

(1)

-38%

-38%

-38%

(2)

(1)
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PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.
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PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

1. In 48 hours, Lustre runs 48 epochs and achieves 37% and 61% for top-1 and top-5 accuracy

(1)

61%

37%
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PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

1. In 48 hours, Lustre runs 48 epochs and achieves 37% and 61% for top-1 and top-5 accuracy
2. Monarch completes the same number of epochs (48) and achieves similar accuracy in 28 hours 

(1)

61%

37%

(2)

63%

38%
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PyTorch - Long Run and Accuracy

Top-1 and top-5 accuracy for Lustre and Monarch training the AlexNet model over a 48 hours period.

1. In 48 hours, Lustre runs 48 epochs and achieves 37% and 61% for top-1 and top-5 accuracy
2. Monarch completes the same number of epochs (48) and achieves similar accuracy in 28 hours 
3. In 48 hours, Monarch runs 81 epochs and achieves 51% and 75% for top-1 and top-5 accuracy

(1)

61%

37%

(2)

63%

38%

(3)

75%

51%
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Conclusions
● Monarch, storage tiering for DL workloads running on HPC centers

○ Transparent to users

○ Applicable to different DL frameworks

○ Optimized for DL I/O patterns and large datasets

● TensorFlow and PyTorch training time reduced by up to 28% and 37%

● Number of I/O operations at the PFS reduced by up to 56%

● Open-sourced at https://github.com/dsrhaslab/monarch

36

https://github.com/dsrhaslab/monarch
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