
User-level Software-Defined Storage Data Planes
Ricardo Macedo

ricardo.g.macedo@inesctec.pt
INESC TEC & University of Minho

Portugal

ABSTRACT

We present Paio, a framework that allows developers to im-
plement portable I/O optimizations for different applications
with minor modifications to their original code base. The
chief insight behind Paio is that if we are able to intercept
and differentiate requests as they flow through different lay-
ers of the I/O stack, we can enforce complex storage policies
without significantly changing the layers themselves. We
demonstrate the performance and applicability of Paio by:
(1) improving 99𝑡ℎ percentile latency by 4× in LSM-based
key-value stores; and (2) ensuring dynamic per-application
bandwidth guarantees under shared storage environments.

1 MOTIVATION

Data-centric systems such as databases, key-value stores
(KVS), and machine learning engines have become an inte-
gral part of modern I/O stacks. Good performance for these
systems often requires storage optimizations such as I/O
scheduling, differentiation, and caching. However, these op-
timizations are implemented in sub-optimal manner.
Tightly coupled optimizations. Most I/O optimizations
are single-purposed as they are tightly integrated within
the core of each system. Implementing these requires deep
understanding of the system’s internal operation model and
profound code refactoring, limiting their maintainability and
portability. For example, optimizations such as differentiating
foreground and background I/O to reduce tail latency are
broadly applicable; however, the way they are implemented
in KVS today (e.g., SILK [1]) requires a deep understanding
of the system, and are not portable across other KVS.
Rigid interfaces. To address the previous challenge, one
could decouple optimizations from the internal system’s
logic. However, this comes with a cost, since one loses the
granularity and internal application knowledge present in
system-specific optimizations. Specifically, conventional I/O
stacks require layers to communicate through rigid inter-
faces that cannot be easily extended (e.g., POSIX), discarding
information that could be used to classify and differentiate
requests at different levels of granularity.
Kernel-level layers.While promoting general applicability,
implementing I/O optimizations at the kernel (e.g., file sys-
tem, block layer) poses several disadvantages. For application-
level information to be propagated to kernel, it requires

breaking user-to-kernel and kernel-internal interfaces, de-
creasing portability and compatibility. Further, these opti-
mizations are ineffective under kernel-bypass storage stacks
(e.g., SPDK, PMDK), since I/O requests are submitted directly
from user-space to the storage device.
Partial visibility. Optimizations implemented in isolation
are oblivious of other systems that compete for the same
storage resources. Under shared infrastructures (e.g., cloud,
HPC), this lack of coordination can lead to conflicting op-
timizations, I/O contention, and performance variation for
both applications and storage backends.

2 PAIO DATA PLANE FRAMEWORK

To address these challenges, we present Paio, a user-level
framework that enables system designers to build portable
and generally applicable storage optimizations by adopting
ideas from the Software-Defined Storage community [3].
The key idea is to implement the optimizations outside

the applications, as data plane stages, by intercepting and
handling the I/O performed by these. These optimizations
are then controlled by a logically centralized manager, the
control plane, that has the global context necessary to prevent
interference among them. Using Paio, one can decouple
complex storage optimizations from current systems, such
as I/O differentiation and scheduling, while achieving results
similar to or better than tightly coupled optimizations. Paio’s
design is built over five core principles.
General applicability. To ensure applicability across dif-
ferent I/O layers, Paio stages are disaggregated from the
internal system logic, contrary to tightly coupled solutions.
Programmable building blocks. Paio follows a decoupled
design that separates the I/O mechanisms from the policies
that govern them, and provides the necessary abstractions for
building new storage optimizations to employ over requests.
Fine-grained control. Paio classifies, differentiates, and en-
forces requests with different levels of granularity, enabling
a broad set of policies to be applied over the I/O stack.
Stage coordination. Paio exposes a control interface that
enables an external control plane to coordinate access to
resources of each stage.
Low intrusiveness. Porting I/O layers to use Paio requires
none to minor code changes.



ENSD’22, , Évora, Portugal Ricardo Macedo

C
ha

nn
el

2

C
ha

nn
el

1

C
ha

nn
el

3

C
ha

nn
el

4

I/O enforcement

I/O differentiation
Control
Plane

P1

P2

P3

Monitoring flows
Rules

Workflows

PAIO Stage
App1

Stage

App2

Stage

App3

Stage

File System

Figure 1: Paio allows implementing programmable

and adaptable user-level storage data plane stages.

2.1 High-level Architecture

Fig. 1 outlines Paio’s high-level architecture. It follows a
decoupled design that separates policies, implemented at an
external control plane, from the mechanisms that enforce
them, implemented at the data plane stage. Paio targets I/O
layers at the user-level. Stages are embedded within layers,
intercepting all I/O requests and enforcing user-defined poli-
cies. Paio is organized in four main components.
Stage interface. Applications access stages through a stage
interface that routes all requests to Paio before being sub-
mitted to the next I/O layer (i.e., App3 →Paio→File System).
For each request, it generates a Context object with the cor-
responding I/O classifiers.1

Differentiationmodule. The differentiation module classi-
fies and differentiates requests based on their Context object.
To ensure requests are differentiated with fine-granularity,
we combine ideas from context propagation [2] to enable
application-level information, only accessible to the layer
itself, to be propagated to Paio.
Enforcement module. The enforcement module is respon-
sible for applying the actual I/O mechanisms over requests.
It is organized with channels and enforcement objects.2 For
each request, the module selects the channel and enforce-
ment object that should handle it. After being enforced, re-
quests are returned to the original data path and submitted
to the next I/O layer (File System).
Control interface. Paio exposes a control interface that
enables the control plane to (1) orchestrate the stage lifecycle
by creating channels and enforcement objects, and (2) ensure
all policies are met by continuously monitoring and fine-
tuning the stage. The control plane provides global visibility,
ensuring that stages are controlled holistically.

3 RESULTS

We validate the feasibility of using Paio under two use cases.
1A context object contains metadata that characterizes a request, including
workflow id, request type, request size, and request context.
2
Enforcement objects are self-contained, single-purposed mechanisms
(e.g., token-buckets, caches, compression) that apply custom I/O logic over
I/O requests, while channels are a stream-like abstraction through which
requests flow. Each channel contains one or more enforcement objects.

Tail latency control in KVS. We implement a stage in
RocksDB, an industry-standard KVS, and demonstrate how
to prevent latency spikes by orchestrating foreground and
background tasks. Results show that by propagating applica-
tion-level information to the data plane stage, Paio outper-
forms RocksDB by at most 4× in 99𝑡ℎ percentile latency, and
achieves similar control and performance when compared
to system-specific, latency-oriented optimizations (SILK). In-
tegrating Paio in RocksDB only required adding 85 LoC.
Per-application bandwidth control. We apply Paio to
TensorFlow and show how to achieve per-application band-
width guarantees under a real shared-storage scenario at the
ABCI supercomputer. Results show that, by having global
visibility, Paio provisions per-application bandwidth guaran-
tees at all times, and improves overall execution time when
compared to a static rate limiting approach. Integrating Ten-
sorFlow with Paio did not required any code changes.

4 CONCLUSION

We have presented Paio, a framework that enables system
designers to build data plane stages applicable over different
I/O layers. It provides differentiated treatment of requests
and allows implementing storage mechanisms adaptable to
different policies. By combining ideas from SDS and context
propagation, we demonstrated that Paio decouples system-
specific optimizations to a more programmable environment
(i.e., a self-contained, easier to maintain, and portable stage),
while enabling similar I/O control and performance. Paio
was published and presented at USENIX FAST 2022 [4].

ACKNOWLEDGMENTS

This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia, within project LA/P/0063/2020, and through the
PhD Fellowship SFRH/BD/146059/2019.

REFERENCES

[1] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravis-
hankar Chandhiramoorthi, and Diego Didona. 2019. SILK: Prevent-
ing Latency Spikes in Log-Structured Merge Key-Value Stores. In 2019
USENIX Annual Technical Conference. USENIX Association.

[2] Jonathan Mace and Rodrigo Fonseca. 2018. Universal Context Propa-
gation for Distributed System Instrumentation. In 13th European Con-
ference on Computer Systems. ACM. https://doi.org/10.1145/3190508.
3190526

[3] Ricardo Macedo, João Paulo, José Pereira, and Alysson Bessani. 2020. A
Survey and Classification of Software-Defined Storage Systems. ACM
Computing Surveys 53, 3, Article 48 (2020). https://doi.org/10.1145/
3385896

[4] Ricardo Macedo, Yusuke Tanimura, Jason Haga, Vijay Chidambaram,
José Pereira, and João Paulo. 2022. PAIO: General, Portable I/O Optimiza-
tions With Minor Application Modifications. In 20th USENIX Conference
on File and Storage Technologies. USENIX Association.

https://doi.org/10.1145/3190508.3190526
https://doi.org/10.1145/3190508.3190526
https://doi.org/10.1145/3385896
https://doi.org/10.1145/3385896

	Abstract
	1 Motivation
	2 Paio data plane framework
	2.1 High-level Architecture

	3 Results
	4 Conclusion
	References

