PAIO: General, Portable IO
Optimizations with Minor Application
Modifications

20th USENIX Conference in File and Storage Technologies
(USENIX FAST 2022)

Ricardo Macedo
INESC TEC & University of Minho

Data-centric systems

g
g
. . mongoDB
* Good performance for these systems often requires storage
optimizations @Xnet O PyTorch

* Scheduling, caching, tiering, replication, ...

* Data-centric systems have become an integral part of
modern |/O stacks

* Optimizations are implemented in sub-optimal manner .

&3 kafka
@ <l

é Amazon
lustre: ceph ..gFs:

@ ParK' G Edbmm

cassandra

Data-centric systems

; evelps Q
% level .r

There Is a better way to implement |orch

/0 optimizations I\x
&3 kafka i+ 4
@ <1’

a d
lu-stre: Ced GFS’
AAAAAA J‘g

[

K

(L

cassandra

Challenge #1

& Tightly coupled optimizations

BN =

* |/O optimizations are single purposed

* Require deep understanding of the
system’s internal operation model

* Require profound system refactoring

 Limited portability across systems

Application
Key-Value Store
1/0 Scheduling 1(Caching N
SILK [1] AC-Key [2]
Tiering 1(Checksumming N
SpanDB [3] k Dong et al. [4]

J

Voo

R

File System

“SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores”. Balmau et al. USENIX ATC 2019.
“AC-Key: Adaptive Caching for LSM-based Key-Value Stores”. Wu et al. USENIX ATC 2020.
"SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage”. Chen et al. USENIX FAST 2021.

“Evolution of Development Priorities in Key-Value Stores Serving Large-scale Applications: The RocksDB Experience”. Dong et al. USENIX FAST 2021.

4

Challenge #1

& Tightly coupled optimizations

* |/O optimizations are single purposed

* Require deep understanding of the
system’s internal operation model

* Require profound system refactoring

 Limited portability across systems

Application

l

l

Key-Value Store

SILK [1]

1/0 Scheduling

N

Caching

_

\

_J

Tiering

OPc) Lﬂ;

_J

f

Checksumming

)oNg et ¢ \77
_

\

J

l

File System

l

R

SILK’s 1/0 Scheduler

* Reduce tail latency spikes in RocksDB

» Controls the interference between
foreground and background tasks

* Required changing several modules,
such as background operation handlers,
internal queuing logic, and thread pools

Challenge #1

Application

l l

Key-Value Store

® Decoupled optimizations

* |/O optimizations should be
disaggregated from the internal logic

 Moved to a dedicated |/0O layer

* Generally applicable PR R S ' ‘
. Dedicated 1/0 layer
* Portable across different scenarios

--

File System

Challenge #2

Application

l l

© Rigid interfaces

° Decqupled optlmllzat.lcns lose granularity Key-Value Store

and internal application knowledge) .
foreground flows

* |/O layers communicate through rigid Y v v vy
' ?
intertaces i compaction flows) (flush flows

boob |

* Discard information that could be used . ’ 1 ‘

to classify and differentiate requests l I I

File System

Challenge #2

© Rigid interfaces

* Decoupled optimizations lose granularity
and internal application knowledge

* |/O layers communicate through rigid
interfaces

* Discard information that could be used
to classify and differentiate requests

Application

l Vo

24

Key-Value Stqr'é

i foreground flows,'

N

_/

IR AR IR T
?

é -)
compaction flows

vy o

1

File System

- I
- -~

. Key-value store operation
'« Workflow ID: 75476 '

x Operation type: read
i+ Operation size: 4096

. [4

. Key-value store operation:
. * Workflow ID: 75482

x Operation type: write
i+ Operation size: 4096

. Key-value store operation:
t » Workflow ID: 75490 '

x Operation type: read .
+ + Operation size: [4096)

Challenge #2

. . P ' Key-value store operation
_ _ Application . .« Workflow ID: 75476
Q Information propagation K .+ Operation type: read
l l . + + Operation size: [4096 :
A 7 , + Context: [t REe o |
* Application-level information must be Key-Value Stofe e L L L
propagated throughout layers K PR > YRR
! foreground flows,’ A) Key-value store operation‘;
S , N ki + « Workflow ID: 75482
* Decoupled optimizations can provide the . v ¢,' ' . Operation type: [KNS
same level of control and performance fczm prr——— ’;ush — .+ Operation size: 4096 ;
P ; . - Context: ;
vy *___J ¥t '
| 0
; Key-value store operation:

'« Workflow ID: 75490
: Operation type: read
x Operation size: 14096

File System

PAIO

 User-level framework for building portable and generally applicable optimizations
* Adopts ideas from Software-Defined Storage [0]

* |/O optimizations are implemented outside applications as data plane stages

» Stages are controlled through a control plane for coordinated access to resources
 Enables the propagation of application-level information through context propagation

* Porting I/O layers to use PAIO requires none to minor code changes

[5] “PAIO: General, Portable I/O Optimizations with Minor Application Modifications”. Macedo et al. USENIX FAST 2022.

[6] “A Survey and Classification of Software-Defined Storage Systems”. Macedo et al. ACM CSUR 2020.
10

PAIO design

Global visibility
(#4)

Information
propagation (#2)

o—o Workflows

File System

' | — Monitoring flows

- - - Rules
User-level

(#3)

Dedicated 1/0 ‘)
layer (#1)

11

PAIO design

| Application | 1
PAI P s
: . A v O Stage ”obj enf -
e |/Q differentiation RocksDB , ,) = 17
“Toreground flows 1/0 differentiation < 3 E
% % % % .select channel (ctx) | <~ ~ §' ‘ ‘ ‘ °I_’ i <
*1/O enforcement S 22 = |
compaction flows | UUbely / U select obje::t(ctx) E
% | flush | channel, \% ~ B E
* Control plane interaction r"'Al',AI-O-S-ta-gét--'; foreground * | channel, 2 [sQ —1 | >|©
o dtast N S
= % — 1| 3] E Ll
File System O . T

Policy: limit the rate of RocksDB'’s flush operations to X MiB/s

12

1/0 differentiation

Context propagation:
instrumentation + propagation phases

Application

A \4
RocksDB

I/0 differentiation

[select_channel (ctx)

token channel

channel,

--------------- channelz

\4

File System

|dentify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

/N

Channel,

Channe

select object (ctx)

Control API

13

1/0 differentiation

;

Context propagation:
propagation + classification phases

Application
A \4

RocksDB

¢S

I/0 differentiation

[select_channel (ctx)

token channel

channel,
channel,
A \/
Context {
workf low—1d : 75756,
type : write,
context : flush,
size : 4090,
I3

Channel,

select object (ctx)

Control API

14

1/0 differentiation

Application

RocksDB

$Es

A

\4

A \/
Context {
workflow—-1id : 75756,
type : write,
context : flush,
size : 4090,
I3

I/0 differentiation

[

elect channel (ctx)

token channel

channel
+
Eiiiiiﬁil"!ﬁ%ﬁii!l
compactions

/N

Channel,

Channe

select object (ctx)

Control API

15

1/0 enforcement

Application

A v Le TS
RocksDB

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Channe

token channel select object (ctx)

N

flush channel;

v

_______________ oreground +

, channel,
compactions

\4

Channel,

File System

PAIO currently supports Noop (passthrough)
and DRL (token-bucket) enforcement objects

Control API

16

1/0 enforcement

Application

A \ 4
RocksDB

token

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Requests return to thelir
original I/0 path

channel

channel,

channel,

Channel,

=N
= -

select object (ctx)

Control API

17

Control plane interaction

Differentiation rules Housekeeping rules

Application

A v PAIO Stage) '1; - ‘; ~ <
RocksDB . — g k~ ©obj_en
foreground flows I/0 differentiation = E
% % % % select channel (ctx) <-- §' - = <
S L
O = | Statistic
|; wkﬂ% /S select object (ctx) b collection
flush channel,;
QN =
oreground + channel Q : %
compactions 2 §
¥ I S -
File System O -
Enforcement
rules

Implements the control algorithms for orchestrating stages (e.q.,
tail latency control, per-application bandwidth guarantees)

18

Tail latency control in LSM-based KVS

RocksDB
* [nterference between foreground and background tasks generates high latency spikes

* Latency spikes occur due to Lo-L1 compactions and flushes being slow or on hold

SILK
e |/O scheduler

* Allocates bandwidth for internal operations when client load is low
* Prioritizes flushes and low level compactions
* Preempts high level compactions with low level ones

 Required changing several core modules made of thousands of LoC

PAIO
 Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/0O scheduling algorithm

19

Tail latency control in LSM-based KVS

RocksDB @ Note: By propagating application-level
* Interference between foreground and background { information to the stage, PAIO can enable

» Latency spikes occur due to Lo-L1 compactions an{ Similar control and performance as system-
specific optimizations y
SILK

* |/O scheduler
 Allocates bandwidth for internal operations when client load is low

* Prioritizes flushes and low level compactions

n]
[) D atalaala alfala) - alaala Aala A a al\V.)) ala¥la
w \/ \ \J \J C/ S A' \J V V \ \J

* Required changing several core modules made of thousands of LoC

PAIO
» Stage provides the I/0O mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* (Control plane provides a SILK-based |/O scheduling algorithm

20

Throughput
(KOps/s)

R\

Mixture workload

50% read 50% write

o O

,,,,,,,,,,,,,,,,,,

- [RoCkSDB | 5p=0ar 1 2 o, e 5 0, O A 06 R 1

120

Throughput: high variability due to constant flushes
and compactions

Latency
(ms)

n O n O

. System configuration and workload
. » 8 client threads and 8 background threads

.« Memory limited to 1GB and /O BW to 200MB/s |

* Bursty workload with peaks and valleys

--

~

99th |atency: high tail latency with peaks with an
average range between 3 and 15 ms

21

Mixture workload

50% read 50% write

R\
o O

Throughput
(KOps/s)

— DN
o O

Throughput
(KOps/s)

—_— NI
o O

Throughput
(KOps/s)

,,,,,,,,,,,,,,,,,,

- [ROCKSDB | 7 0o e o A1 o A AR o A

,,,,,,,,,,,,,,,,,,

i

77

0 300 600 900

Time (s)

Throughput: suffers periodic throughput drops due
to accumulated backlog

300

600
Time (s)

900

1200

99th Jatency: low and sustained tail latency

22

Mixture workload

50% read 50% write

27201 [RoCksDB] {1 i 3 W o M A A S
%D 8 10 ",',,',',',,',',',,',',T,',',T,',',f,',',,',',',,',‘ TALY NI ,:',' AN T'I,',,,",'i N AL B R LB | B N ,'3,', L I . | I',',', B I A
2 g 10F . 1 |
,ﬁ ~
- 20
5 >
22 201 SILK 12 2 15F
E LI Whwomsvmnueenvmarntt 300100 o T 0010 L O O O O 1) SEpf
=2 T (1| SRR LRt kit Bl {5 NEEE oY St B R { X) R | [M et cEack Rk 1| SR Rt I {8 R 1 T RS
=TT SR — 5 PN aap N W A ot N oM Pt < I et o — L
H
-~ . | l ! 20
£720r[_PaIO T §”§ SE
= O 10 -~ VA T AN R VU VY A T U e T Y L - 2 > TOF
B8 beasseanazes 5 e oo eyl i) A
-

0 300 600 900 1200 0 300 600 900

Time (s) Time (s)

PAIO and SILK observe a 4x decrease in absolute tail latency

23

Read-heavy workload

90% read 10% write

5 ! ! ! >, 20
&% 20r | RocksDB R T T T T VTN I =Tl o O ot | O 1 R
S O NE Tt | SEEREEEEEREEEREEEEEEER S L o o YTV, WYV, (VY VAV, e Y 2B 1o WWIMNUNVY e
S 1004t Y4t/ -y 44 4 A 4 & =
EM oo — SF WM N
= -
£7 20
%D 8 10_
g
5~ | ! ' 20
23220 PAIO 1 B o 5 e
5 § 10",',,',',',,',',',,',',f,',',f,',',f,',',f,',',,' AR | BSinaneses WLESEpUSo- = Rui 1) T o S R ' R ct DY SN o AR o O § é 1(5)' ”””
E 2 hesesencsacsoscsoodd | | VSN Y ¥ SRS RO, PUCEIN = L oo 4 [, WINPT | B < gy WO
F]]]]] i

0 300 600 900 1200 0 300 600 900 1200

Time (s) Time (s)

Sustained tail latency but higher than SILK, due to not preempting compactions

24

Write-heavy workload

10% read 90% write

R\
o O
|

~ | RocksDB :'"] T AT ¥ "'I'::' Tl $ I " MAh

Throughput
(KOps/s)

\t- M- - U

— DN
S
lwn

I P
i
A

-
! |

(KOps/s)

Throughput

(KOps/s)

Throughput

Since flushes occur more frequently, PAIO slows down high level

compactions more aggressively, temporarily halting low level ones

25

Summary

PAIO, a user-level framework that enables system designers to build custom-made
data plane stages
 Combines ideas from Software-Defined Storage and context propagation

Decouples system-specific optimizations to dedicated 1/0 layers

Data plane stages
* Tail latency control in LSM-based KVS (RocksDB)
* Per-application bandwidth control in shared storage settings (TensorFlow)

Enables similar control and I/0 performance as system-specific optimizations

26

PAIO: General, Portable I/O
Optimizations with Minor Application
Modifications

dsrhaslab

() Overview [Repositories 10] Projects & Packages A Teams A People 8 f33 Settings

Ricardo Macedo

Pinned Customize pins
| | |
INESC TEC & University of Minho . v . monaron (st
PAIO: General, Portable I/O Optimizations With Minor Application Hierarchical Storage Management for Deep Learning Frameworks
Modifications
®c++ s %2 @® Python 5
DA ricardo.g.macedo@inesctec.pt
] cat | Public 3] bdus | Public

A framework for implementing Block Devices in User Space

‘ ’ g ith u b . CO m/d S rh aS | ab CaT: Content-aware Tracing and Analysis for Distributed Systems Forked from albertofaria/bdus
7\

@® Python ¥ 3 @®cC

&) dsr-haslab.github.io

] prisma | Public

A data prefetching storage data plane for accelerating DL training
performance.

@®c++ 15

mailto:ricardo.g.macedo@inesctec.pt
http://github.com/dsrhaslab
http://dsr-haslab.github.io

