PAIG

General, Portable 1/0 Optimizations
With Minor Application Modifications

Ricardo Macedo, Yusuke Tanimura’ Jason Haga, Vijay Chidambaram, José Pereira, Jodo Paulo

INESC TEC and University of Minho

U CHALLENGES AND MOTIVATION

*AIST

Y UT Austin and VWMware Research

EXISTING I/O OPTIMIZATIONS ARE IMPLEMENTED IN SUB-OPTIMAL MANNER:

X) Rigid interfaces

* Existing interfaces are predefined and do
not consider application-level logic

e Discard information that could be used to
classify and differentiate requests with
different levels of granularity

@ Tightly coupled optimizations
 Optimizations are single-purposed
 Require deep understanding of the system's

internal operation model
» Require profound system refactoring

@ Decouple optimizations

 Disaggregated from the system's logic
 Generally applicable and portable

) Information propagation
 Propagate application-level information
down the I/0 stack

23 PAIO IN A NUISHEll

1777

... Monitoring flows

= med

|

i

| 7/

1< (oY)

Ve ©) 'l'

| 5 £ |

2 z o) :

/O o |

L-= = | Workflows\
General applicability -

e Stages are disaggregated from internal system logic, ensuring
applicability across different 1/0 layers

Programmable building blocks
» Decoupled design that separates I/0 mechanisms from policies
e Provides abstractions for building new storage optimizations

7/)|

Fine=grained 1/0 control
» Classifies, differentiates, and enforces |/0 requests with different
levels of granularity

Stage coordination
 Exposes a control interface that enables the control plane to
dynamically adapt stages to new policies and workloads

Low intrusiveness
» Porting I/0 layers to use PAIO requires none to minor code changes

3 TAIL LATENCY CONTROL IN KVS

e lle implemented a PAIO stage to prevent latency spikes in RocksDB

 The stage replicates SILK's |/0 scheduler by (1) dynamically allocating bandwidth to
internal operations, and (2) prioritizing flushes and low level compactions

e |ntegrating PAIO in RocksDB only required adding 85 LoC

 PAIO improves RocksDB's 99th percentile latency by 4x and enables similar control and
performance as SILK

=N
(=]

o
T
== N

" |_RocksDB I O o W A A

(ms)

== N

OoOUITOS UIOUIO UIoUuIo uToulo
T T

(ms)

=N
= =)
T

M LAuto-tuned | T e T e

== N

P SILR] foogi ol o b o b~ i s st]

=N
o O

(ms)

Latency Latency Latency Latency

(KOps/s) (KOps/s) (KOps/s) (KOps/s)

=N
[=]

o
— T
== N

(ms)

Throughput Throughput Throughput Throughput

360 600 960 1200
Time (s)

=
N
(=}
S
(==}

0 300 600 900
Time (s)

~\N\V /7

_ PAIO IS A USER-
wris T~ LEVEL FRAMEWORK
THAT ENABLES
BUILDING PORTABLE
AND GENERALLY
APPLICABLE STORAGE —
" OPTIMIZATIONS

X) Partial visibility
e (Optimizations act in isolation
e QOblivious to other systems, competing
for shared resources
e Lack of coordination

@ Global 170 control

e QOperate in coordination
e Ensure holistic control of 1/0 workflows

%) Kernel-level layers
 Impossible to extend without breaking APIs
e More restricted and error prone environment
» Ineffective under kernel-bypass stacks

) Actuate at user-level
e Dedicated user-level layer
e Promotes portability
e Eases information propagation

2} DIFFERENTIATION &
ENFORCEMENT

Context propagation

 PAIO combines ideas from context propagation and applies them
to ensure fine-grained control over 1/0 requests

» Context propagation enables a system to forward application-
level information along its execution path

7~

Channel and enforcement object=-level 1/0 differentiation
» Toclassify requests, PAIO creates Context objects that contain
the metadata that characterize a given 1/0 request
—— « Examples of such classifiers include the workflow-id, request
type, size, and request context

. Enforcement of 1/0 mechanisms over requests
» Provides building blocks for developing I/0 mechanisms to be
employed over |/0 requests
 Noop implements a pass—through mechanism that copies the
request's content to a Result object
 Dynamic Rate Limiter implements a token-bucket to control the
rate and burstiness of 1/0 workflows

VA

Transparent interception of 1/0 calls
e PAIO uses LD_PRELOAD to intercept calls to shared libraries (e.g.,
libe) and route them to the data plane stage
 Enables 1/0 layers to use PAIO without changing any line of code

S PER-APP. BANDWIDTH CONTROL

e lle implemented a PAIO stage to achieve dynamic per—application bandwidth

guarantees under shared-storage at the ABCI supercomputer
 Each stage controls the workflows' rate through a max-min fair share algorithm
e |ntegrating PAIO in TensorFlow did not required any code changes
 PAIO ensures that policies are met at all times, and whenever leftover bandwidth
is available, PAIO shares it across active instances

s 382

1,:259MiB/s
199MiB/s

149MiB/s

200MiB/s
150MiB/s By

1,:199MiB/s
1,:149MiB/s

VR 421 385 341 Eon 360! 4251

VI JqMIB/s |\ fip/

1,:256MiB/s

1,:329MiB/s

349MiB/s

: T

384MiB/s I3J299Mil!3»/s'

296MiB/s ;

1,:198MiB/s 380

245MiB/s 1,:147MiB/s MiB/s__ MiB/s

10] RES 50
Time (minutes)

423MiB/s 385MiB/s 416MiB/s

Throughput (MiB/s) Throughput (MiB/s)

H O dsrhaslab/paio
D<) rgmacedo@inesctec.pt

https://www.usenix.org/conference/

_Tl
FAST., =aAIsT
kB TEXAS ACKNOWL-EDGMENTS.- WE THANK AIST FOR PROVIDING ACCESS TO COMPUTATiONAL RESOURCES OF ABCI. THIS WORK WAS SUPPORTED B8Y THE PORTUGUESE
FOUNDATION FOR SCIiENCE AND TECHNOLOGY AND THE EUROPEAN REGIONAL DEVELOPMENT FUND, THROUGH THE PHD FELLOWSHIP SFRH/BD/146059/2019
< vmware AND PROJECTS BIiGHPC (POCI-01-O247-FEDER-O45924) AND PASTOR (UTA-EXPL/CA/OO075/2019).
L d ' <

|4 T

fast22/presentation/macedo

https://www.usenix.org/conference/fast22/presentation/macedo

