
Ricardo Macedo
INESC TEC & University of Minho

Building user-level storage
data planes with PAIO

Accelerated Data Analytics and Computing Institute Seminar

part 1
background and motivation

3

Data-centric systems

•Data-centric systems have become an integral part of
modern I/O stacks

•Good performance for these systems often requires
storage optimizations

•Scheduling, caching, tiering, replication, …

•Optimizations are implemented in sub-optimal manner

4

Challenge #1

Tightly coupled optimizations Application

I/O Scheduling
SILK [1]

Caching
AC-Key [2]

Tiering
SpanDB [3]

Checksumming
Dong et al. [4]

Key-Value Store

File System

• I/O optimizations are single purposed

•Require deep understanding of the
system’s internal operation model

•Require profound system refactoring

• Limited portability across systems

[1] “SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores”. Balmau et al. USENIX ATC 2019.

[2] “AC-Key: Adaptive Caching for LSM-based Key-Value Stores”. Wu et al. USENIX ATC 2020.

[3] "SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage”. Chen et al. USENIX FAST 2021.

[4] “Evolution of Development Priorities in Key-Value Stores Serving Large-scale Applications: The RocksDB Experience”. Dong et al. USENIX FAST 2021.

5

Challenge #1

Tightly coupled optimizations

• I/O optimizations are single purposed

•Require deep understanding of the
system’s internal operation model

•Require profound system refactoring

• Limited portability across systems

Application

Key-Value Store

File System

I/O Scheduling
SILK [1]

Caching
AC-Key [2]

Tiering
SpanDB [3]

Checksumming
Dong et al. [4]

SILK’s I/O Scheduler
• Reduce tail latency spikes in

RocksDB

• Controls the interference
between foreground and
background tasks

• Required changing several
modules, such as background
operation handlers, internal
queuing logic, and thread pools

6

Challenge #1

Decoupled optimizations

Application

I/O Scheduling
SILK [1]

Caching
AC-Key [2]

Tiering
SpanDB [3]

Checksumming
Dong et al. [4]

Key-Value Store

File System

Dedicated I/O layer
I/O Scheduling Caching

Tiering Checksumming

• I/O optimizations should be
disaggregated from the internal logic

•Moved to a dedicated I/O layer

•Generally applicable

•Portable across different scenarios

7

Challenge #2

Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

•Decoupled optimizations lose granularity
and internal application knowledge

• I/O layers communicate through rigid
interfaces

•Discard information that could be used
to classify and differentiate requests

8

Challenge #2

Rigid interfaces

•Decoupled optimizations lose granularity
and internal application knowledge

• I/O layers communicate through rigid
interfaces

•Discard information that could be used
to classify and differentiate requests

Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

75476
read

4096

1

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

75482
write
4096

2

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

75490
read

4096

3

9

Challenge #2

Information propagation

•Application-level information must be
propagated throughout layers

•Decoupled optimizations can provide
the same level of control and
performance

Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75476
read

4096

1

foreground task

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75482
write
4096

2

flush

 Key-value store operation
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75490
read

4096

3

compaction L1-L2

10

Challenge #3

File System

Application

Key-Value Store

Application

Key-Value Store

Application

Key-Value Store

Partial visibility

•Optimizations are oblivious of other
systems

• Lack of coordination

•Conflicting optimizations, I/O
contention, and performance
variation

! Note: the storage backend can either be local
(e.g., ext4, xfs) or distributed (e.g., Lustre, GPFS)

! Note: in this case it’s a key-value store, but could be any other data-
centric layer (e.g., DL framework, scientific application, database)

11

Challenge #3

File System

Application Application Application

Global I/O control

•Optimizations should be aware of
the surrounding system stack

•Operate in coordination

•Holistic control of I/O workflows and
shared resources

Key-Value Store Key-Value Store Key-Value Store

part 2
designing a storage data
plane framework

13

PAIO

• User-level framework for building portable and generally applicable optimizations

• Adopts ideas from Software-Defined Storage [6]

• I/O optimizations are implemented outside applications as data plane stages

• Stages are controlled through a control plane for coordinated access to resources

• Enables the propagation of application-level information through context propagation

• Porting I/O layers to use PAIO requires none to minor code changes

[5] “PAIO: General, Portable I/O Optimizations with Minor Application Modifications”. Macedo et al. USENIX FAST 2022.

[6] “A Survey and Classification of Software-Defined Storage Systems”. Macedo et al. ACM CSUR 2020.

14

PAIO design

User-level
(#4)

Information
propagation (#2)

Dedicated I/O
layer (#1)

Global visibility
(#3)

15

PAIO design

Policy: limit the rate of RocksDB’s flush operations to X MiB/s

• I/O differentiation

• I/O enforcement

•Control plane interaction

16

I/O differentiation

Identify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

Context propagation:
instrumentation + propagation phases

17

I/O differentiation

Context {
workflow-id : 75756,
type : write,
context : flush,
size : 4096,
…

}

Context propagation:
propagation + classification phases

18

I/O differentiation

Context {
workflow-id : 75756,
type : write,
context : flush,
size : 4096,
…

}

Differentiation module

19

I/O enforcement

PAIO currently supports Noop (passthrough) and
DRL (token-bucket) enforcement objects

Enforcement module

20

I/O enforcement

Requests return to their
original I/O path

21

Control plane interaction
Housekeeping rulesDifferentiation rules

Statistic
collection

Enforcement
rules

Implements the control algorithms for orchestrating stages (e.g.,
tail latency control, per-application bandwidth guarantees)

22

More about PAIO

PAIO paper
• Context propagation
• PAIO interfaces
• Control algorithms
• Micro and macro experiments

part 3
building storage data
planes

24

Per-application bandwidth control
ABCI supercomputer
• Jobs can be co-located in the same compute node

• Each job runs with dedicated CPU cores, memory, GPU, and storage quota

• Local disk bandwidth is shared, leading to I/O interference and performance variation

BLKIO
• cgroup’s block I/O controller allows static rate limiting read and write operations

• Adjusting the rate requires stopping and restarting jobs

• Cannot leverage from leftover bandwidth

PAIO
• Stage provides the I/O mechanisms to dynamically rate limit workflows at each instance

• Integrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

• Control plane provides a proportional sharing algorithm to ensure per-application bandwidth

QoS guarantees

25

Per-application bandwidth control
ABCI supercomputer
• Jobs can be co-located in the same compute node

• Each job runs with dedicated CPU cores, memory, GPU, and storage quota

• Local disk bandwidth is shared, leading to I/O interference and performance variation

BLKIO
• cgroup’s block I/O controller allows static rate limiting read and write operations

• Adjusting the rate requires stopping and restarting jobs

• Cannot leverage from leftover bandwidth

PAIO
• Stage provides the I/O mechanisms to dynamically rate limit workflows at each instance

• Integrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

• Control plane provides a proportional sharing algorithm to ensure per-application bandwidth

QoS guarantees

26

Per-application bandwidth control
ABCI supercomputer
• Jobs can be co-located in the same compute node

• Each job runs with dedicated CPU cores, memory, GPU, and storage quota

• Local disk bandwidth is shared, leading to I/O interference and performance variation

BLKIO
• cgroup’s block I/O controller allows static rate limiting read and write operations

• Adjusting the rate requires stopping and restarting jobs

• Cannot leverage from leftover bandwidth

PAIO
• Stage provides the I/O mechanisms to dynamically rate limit workflows at each instance

• Integrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

• Control plane provides a proportional sharing algorithm to ensure per-application

bandwidth QoS guarantees

27

Per-application bandwidth control
Th

ro
ug

hp
ut

 (M
iB

/s
)

550

250

500

750

1000

0 10 20 30 40 50

421
MiB/s

385
MiB/s

394
MiB/s

341
MiB/s

342
MiB/s

329
MiB/s

I1:256MiB/s

I2:259MiB/s

I3:257MiB/s

I4:248MiB/s

322
MiB/s

330
MiB/s

320
MiB/s

369
MiB/s

365
MiB/s

425
MiB/s

Baseline

1
2

3 4 5 6

7

950

250

500

750

1000

0 10 20 30 40 50 60
149
MiB/s

150
MiB/s

198
MB/s

150
MiB/s

200
MiB/s

297
MiB/s

I1:149MiB/s
I2:199MiB/s

I3:298MiB/s

I4:342MiB/s

149MiB/s

199MiB/s

296MiB/s

150MiB/s

200MiB/s
149
MiB/s

Blkio

1

2
3 4 5

6

7

Th
ro

ug
hp

ut
 (M

iB
/s

)

Time (minutes)
0

250

500

750

1000

0 10 20 30 40 50

423MiB/s 385MiB/s

384MiB/s

245MiB/s

296MiB/s

349MiB/s

I1:147MiB/s
I2:198MiB/s

I3:299MiB/s

I4:329MiB/s

242
MiB/s

288
MiB/s

354
MiB/s

380
MiB/s

370
MiB/s

416MiB/s

PAIO

1

2
3

4
5

6

7

System configuration and workload
• 4 working instances, each running a TensorFlow job

• Dedicated compute and memory resources

• Disk bandwidth limited to 1GiB/s

• Jobs start at different times

Instance I1 {150 MiB/s} Instance I2 {200 MiB/s}

Instance I3 {300 MiB/s} Instance I4 {350 MiB/s}

I3 and I4 cannot meet their bandwidth targets during 31 and 34 minutes

28

Per-application bandwidth control
Th

ro
ug

hp
ut

 (M
iB

/s
)

550

250

500

750

1000

0 10 20 30 40 50

421
MiB/s

385
MiB/s

394
MiB/s

341
MiB/s

342
MiB/s

329
MiB/s

I1:256MiB/s

I2:259MiB/s

I3:257MiB/s

I4:248MiB/s

322
MiB/s

330
MiB/s

320
MiB/s

369
MiB/s

365
MiB/s

425
MiB/s

Baseline

1
2

3 4 5 6

7

950

250

500

750

1000

0 10 20 30 40 50 60
149
MiB/s

150
MiB/s

198
MB/s

150
MiB/s

200
MiB/s

297
MiB/s

I1:149MiB/s
I2:199MiB/s

I3:298MiB/s

I4:342MiB/s

149MiB/s

199MiB/s

296MiB/s

150MiB/s

200MiB/s
149
MiB/s

Blkio

1

2
3 4 5

6

7

Th
ro

ug
hp

ut
 (M

iB
/s

)

Time (minutes)
0

250

500

750

1000

0 10 20 30 40 50

423MiB/s 385MiB/s

384MiB/s

245MiB/s

296MiB/s

349MiB/s

I1:147MiB/s
I2:198MiB/s

I3:299MiB/s

I4:329MiB/s

242
MiB/s

288
MiB/s

354
MiB/s

380
MiB/s

370
MiB/s

416MiB/s

PAIO

1

2
3

4
5

6

7

Instances cannot be dynamically provisioned with available disk bandwidth

Instance I1 {150 MiB/s} Instance I2 {200 MiB/s}

Instance I3 {300 MiB/s} Instance I4 {350 MiB/s}

29

Per-application bandwidth control
Th

ro
ug

hp
ut

 (M
iB

/s
)

550

250

500

750

1000

0 10 20 30 40 50

421
MiB/s

385
MiB/s

394
MiB/s

341
MiB/s

342
MiB/s

329
MiB/s

I1:256MiB/s

I2:259MiB/s

I3:257MiB/s

I4:248MiB/s

322
MiB/s

330
MiB/s

320
MiB/s

369
MiB/s

365
MiB/s

425
MiB/s

Baseline

1
2

3 4 5 6

7

950

250

500

750

1000

0 10 20 30 40 50 60
149
MiB/s

150
MiB/s

198
MB/s

150
MiB/s

200
MiB/s

297
MiB/s

I1:149MiB/s
I2:199MiB/s

I3:298MiB/s

I4:342MiB/s

149MiB/s

199MiB/s

296MiB/s

150MiB/s

200MiB/s
149
MiB/s

Blkio

1

2
3 4 5

6

7

Th
ro

ug
hp

ut
 (M

iB
/s

)

Time (minutes)
0

250

500

750

1000

0 10 20 30 40 50

423MiB/s 385MiB/s

384MiB/s

245MiB/s

296MiB/s

349MiB/s

I1:147MiB/s
I2:198MiB/s

I3:299MiB/s

I4:329MiB/s

242
MiB/s

288
MiB/s

354
MiB/s

380
MiB/s

370
MiB/s

416MiB/s

PAIO

1

2
3

4
5

6

7

PAIO ensures that policies are met at all times, and whenever leftover
bandwidth is available, PAIO shares it across active instances

Instance I1 {150 MiB/s} Instance I2 {200 MiB/s}

Instance I3 {300 MiB/s} Instance I4 {350 MiB/s}

30

Tail latency control in LSM-based KVS
RocksDB
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold

SILK
• I/O scheduler

• Allocates bandwidth for internal operations when client load is low

• Prioritizes flushes and low level compactions

• Preempts high level compactions with low level ones

• Required changing several core modules made of thousands of LoC

PAIO
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm

31

Tail latency control in LSM-based KVS
RocksDB
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold

SILK
• I/O scheduler

• Allocates bandwidth for internal operations when client load is low
• Prioritizes flushes and low level compactions
• Preempts high level compactions with low level ones

• Required changing several core modules made of thousands of LoC

PAIO
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm

! Note: By propagating application-level
information to the stage, PAIO can enable
similar control and performance as system-
specific optimizations

32

Mixture workload
50% read 50% write

System configuration and workload
• 8 client threads and 8 background threads

• Memory limited to 1GB and I/O BW to 200MB/s

• Bursty workload with peaks and valleys

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

Throughput: high variability due to constant flushes
and compactions

99th latency: high tail latency with peaks with an
average range between 3 and 15 ms

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

33

Mixture workload
50% read 50% write

Throughput: suffers periodic throughput drops due
to accumulated backlog

99th latency: low sustained tail latency

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) RocksDB

5
10
15
20

La
te
nc
y

(m
s)

10
20

Th
ro
ug
hp
ut

(K
O
ps
/s
) SILK

5
10
15
20

La
te
nc
y

(m
s)

10
20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)
1200

PAIO and SILK observe a 4x decrease in absolute tail latency

34

Data planes for Deep Learning

[7] “Accelerating Deep Learning Training Through Transparent Storage Tiering”. Dantas et al. ACM/IEEE CCGrid 2022.

[8] “Monarch: Hierarchical Storage Management for Deep Learning Frameworks”. Dantas et al. IEEE Cluster@Rex-IO 2021.

[9] “The Case for Storage Optimization Decoupling in Deep Learning Frameworks”. Macedo et al. IEEE Cluster@Rex-IO 2021.

Storage tiering (Monarch)
• Framework-agnostic storage middleware

• Leverages existing storage tiers of supercomputers

• Accelerates DL training time by up to 28% and 37% in

TensorFlow and PyTorch

• Decreases the operations submitted to the PFS

Parallel data prefetching (Prisma)
• Data plane for prefetching training data samples

• Significantly outperforms baseline PyTorch and TensorFlow

configurations

• Achieves similar performance as carefully engineered I/O

optimizations in TensorFlow

'/�IUDPHZRUN
WUDLQLQJ�ILOH�

/�

/�

/1

/�

6WRUDJH�GULYHU
�H�J��ORFDO�)6��

6WRUDJH
TXRWD

6WRUDJH�GULYHU
�H�J��3)6��

6WRUDJH�TXRWD

6WRUDJH�+LHUDUFK\0HWDGDWD�&RQWDLQHU
)'�PDS

)3DWK�PDS

ORJLFDO�IG SK\VLFDO�IG

ORJLFDO�SDWK SK\VLFDO�SDWK

0RQDUFK

/RFDO�)LOH�6\VWHP3DUDOOHO�)LOH�6\VWHP

WUDLQLQJ�ILOH�1���

3ODFHPHQW�+DQGOHU�

WKUHDG�SRROSODFHPHQW
SROLF\

���
7� 717�

WUDLQLQJ�ILOH�1��

RSHQ UHDG� UHDG� FORVH��� ��� ���
�

�

� �
,9

,
,, ,,,

7��UHDG
7��ZULWH

�

�

� �

�

�

'/�)UDPHZRUN

35,60$

)LOH�6\VWHP

$XWRWXQHU
DOJRULWKP�
�VHWBQBWKUHDGV����
�VHWBEXIIHUBVL]H���

ILOHQDPHB�
���

FRQWHQWB�
���

FRQWHQWB�ILOHQDPHB�

%XIIHU

&RQVXPHU��
3ULVPD�UHDG�ILOHQDPHB��

&RQVXPHU�M
3ULVPD�UHDG�ILOHQDPHBQ�

3URGXFHU��
SUHDG�ILOHQDPHB��

���

�

)LOHQDPHV
/LVW

ILOHQDPHB�
ILOHQDPHB�

ILOHQDPHBP
���

7KUHDG�3RRO
3URGXFHU�����
3URGXFHU�N

$

�

&

'

%

ILOHQDPHBQ FRQWHQWBQ

3URGXFHU�N
SUHDG�ILOHQDPHBQ�

�

4XHXH

35

Summary and takeaways

• PAIO, a user-level framework to build custom-made storage data plane stages

• Combines ideas from Software-Defined Storage and context propagation

• Decouples system-specific optimizations to dedicated I/O layers

• User-level data planes enable similar control and I/O performance as system-

specific optimizations

• Can be applied over (a lot of) different storage scenarios …

Ricardo Macedo
INESC TEC & University of Minho

Building user-level storage
data planes with PAIO

Accelerated Data Analytics and Computing Institute Seminar

ricardo.g.macedo@inesctec.pt

github.com/dsrhaslab

dsr-haslab.github.io

mailto:ricardo.g.macedo@inesctec.pt
http://github.com/dsrhaslab
http://dsr-haslab.github.io

