Accelerated Data Analytics and Computing Institute Seminar

Building user-level storage
data planes with PAIO

Ricardo Macedo
INESC TEC & University of Minho

part 1

background and motivation

Data-centric systems

1\!
)

* Data-centric systems have become an integral part of
modern I/O stacks

.mongoDB
* Good performance for these systems often requires .
storage optimizations @Xnet O PyTOI’Ch
* Scheduling, caching, tiering, replication,

e Optimizations are implemented in sub-optimal manner
P P P &3 kafka

é @ Amazon <Q> ~
SageMaker 4]l

lu-s-t-re e CePN BecGFS'
@ park’ i lERbEm

cassandra

Challenge #1

& Tightly coupled optimizations Application
* |/O optimizations are single purposed
Key-Value Store
* Require deep understanding of the "1/0 Scheduling |[Caching
system’s internal operation model . SILK[] || ACKey[2]
: : (Tiering \ (Checksumming \
* Require profound system refactoring SpanDB [3] Dong et al. [4]
* Limited portability across systems l l l l

File System

“SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores”. Balmau et al. USENIX ATC 2019.

“AC-Key: Adaptive Caching for LSM-based Key-Value Stores”. Wu et al. USENIX ATC 2020.

"SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage”. Chen et al. USENIX FAST 2021.

“Evolution of Development Priorities in Key-Value Stores Serving Large-scale Applications: The RocksDB Experience”. Dong et al. USENIX FAST 2021.

BN =

Challenge #1

& Tightly coupled optimizations
* |/O optimizations are single purposed

* Require deep understanding of the
system'’s internal operation model

* Require profound system refactoring

 Limited portability across systems

Application

l

l

Key-Value Store

N

1/0 Scheduling Caching
SILK [1] AC-Key [2]
Tiering Checksumming

SpanDB [3] Dong et al. [4]
_ J L

w,

Voo

File System

R

SILK’s I/0 Scheduler

* Reduce tail latency spikes in
RocksDB

» Controls the interference
between foreground and
background tasks

* Required changing several
modules, such as background
operation handlers, internal
queuing logic, and thread pools

Challenge #1

Application
l l

Key-Value Store

@ Decoupled optimizations

* |/O optimizations should be
disaggregated from the internal logic

* Moved to a dedicated |/O layer

--

. Dedicated I/0 layer
;

--

File System

* Generally applicable

e Portable across different scenarios

Challenge #2

o Application
© Rigid interfaces l l
* Decoupled optimizations lose granularity Key-Value Store
and internal application knowledge) f — .
oregroun ows
. L 20NN TN TR R
* |/O layers communicate through rigid —
interfaces " compaction flows | (flush flows
ooy |

e Discard information that could be used & l I : 1 I :

File System

to classify and differentiate requests

Challenge #2

- N
DS "~

Application | {Kervaiue shre speration;
igid | R .« Workflow ID: 75476 5
& Rigid interfaces l K e ond
. '« Operation size: [4096
» Decoupled optimizations lose granularity Key-Value Store | T
and internal application knowledge) - .
foreground flows;
- . Vb s . Key-value store operation:
* |/0O layers communicate through rigid — 3 S 1 1 - Workflow ID: 75482 ;
interfaces " compaction flows) (flush flowsx," - Operat!on t)llpe: write
¢ ¢ ¢ Ki + + Operation size: [4096 ;
: . . \ _,_..-_9"""*"';:3
e Discard information that could be used l I 1 I

to classify and differentiate requests

. Key-value store operation:
File System + Workflow ID: 75490 5
y * Operation type: read :

' . Operation size: 14006

Challenge #2

@ Information propagation

* Application-level information must be
propagated throughout layers

* Decoupled optimizations can provide
the same level of control and
performance

Application

l |

Key-Value Stqi"e

-

_

foreground flows,’

IR IRTE

?

_

i compaction flows 1 [flush flows

ooy oy boo.L

][

S S

' Key-value store operation
+ » Workflow ID: 75476 -

: - Operation type: read
» « Operation size: 4096

N1 =Y eH foreground task

' 4

- oy
.....
N

. Key-value store operation:
+ « Workflow ID: 75482 '

+ « Operation type: write
'« Operation size: /4096

: « Context:

1 4

; Key-value store operation:
'« Workflow ID: 75490

: Operation type: read
x Operation size: 14096

Challenge #3

Note: in this case it’s a key-value store, but could be any other data-
centric layer (e.g., DL framework, scientific application, database)

& Partial visibility

* Optimizations are oblivious of other
systems

Application |i i| Application |i || Application
NI S
Key-Value Store Key-Value Store | Key-Value Store |}

ooy Vv vy vy

e |_ack of coordination

* Conflicting optimizations, 1/0
contention, and performance

File System
variation
Note: the storage backend can either be local
(e.g., extd, xfs) or distributed (e.g., Lustre, GPFS)

10

Challenge #3

® Gilobal I/0 control

'Optimization§ should be aware of | Application | | Application | Application g
the surrounding system stack] ! 1 ! 1 !

+ Operate in coordination {LKey-Value Storo [{{ Key.Value Store || Key Value Storo |

Yo gagege

ooy Vv vy vy

* Holistic control of I/O workflows and File System

shared resources

part 2

designing a storage data
plane framework

PAIO

* User-level framework for building portable and generally applicable optimizations
* Adopts ideas from Software-Defined Storage [6]

* |/O optimizations are implemented outside applications as data plane stages

» Stages are controlled through a control plane for coordinated access to resources
* Enables the propagation of application-level information through context propagation

* Porting I/O layers to use PAIO requires none to minor code changes

[5] “PAIO: General, Portable I/O Optimizations with Minor Application Modifications”. Macedo et al. USENIX FAST 2022.

[6] “A Survey and Classification of Software-Defined Storage Systems”. Macedo et al. ACM CSUR 2020.
13

PAIO design

Information
propagation (#2)

User-level
(#4)

File System

Dedicated 1/0 ‘)
layer (#1)

Global visibility
(#3)

o—o Workflows

' | — Monitoring flows

- - - Rules

14

PAIO design

Application
‘ A v ‘ PAIO Stage «‘g."';‘~-J_
. ' it RocksDB oy g~ ©0J_en
/0 differentiation “foreground flows 1/0 differentiation g _17 e
% % % % .select channel (ctx) | <~ ~ §' ‘ ‘ ‘ .I_) g -7 %
< |5Q > — —_
O I/ O enforcement ol Nl | flush flows / U L =)
% R . 1 k select object (ctx) j-_-;
A D L S R S
- TR G M A oreground + —_—
* Control plane interaction |7~ " "piio Stage o erions | channelz § 5Q =1 (<> [“
=== [T)| 5| TEE S|
File System O x. __ T

Policy: limit the rate of RocksDB'’s flush operations to X MiB/s

15

/O differentiation

Context propagation:
instrumentation + propagation phases

Application

A \4
RocksDB

1/0 differentiation

[select_channel (ctx)

token channel
flush channel;

oreground +
compactions

channel,

\4

File System

ldentify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

/N

Channel,

Channe

select object (ctx)

Control API

16

/O differentiation

Context propagation:
propagation + classification phases

Application
A \4

RocksDB

I/0 differentiation

foreground flows
% % % % select channel (ctx)
|; token channel select object (ctx)
channel, -
~
V
~
~
A v S
Context { S
workflow-id : 75756,
type : write,
context : flush,
size : 4096,
I3

Control API

/O differentiation

Application

RocksDB

$Es

A

\4

A \/
Context {
workflow—-1id : 75756,
type : write,
context : flush,
size : 4090,
I3

I/0 differentiation

[select_channel (ctx)

Channe

token channel

channel
+
compactions

N

select object (ctx)

Y

Control API

Channel,

Differentiation module

18

/O enforcement

Enforcement module

Application

A \4
RocksDB

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Channe

token channel select object (ctx)

/N

Channel,

channel,

--------------- channelz

\4

File System

PAIO currently supports Noop (passthrough) and
DRL (token-bucket) enforcement objects

19

/O enforcement

Application

A \ 4
RocksDB

token

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Requests return to their
original I/0 path

channel

channel,

channel,

Channel,

am W
= ‘Q

select object (ctx)

Control API

20

Control plane interaction

Differentiation rules

Application

A v PAIO|Stage ~ ™>------
RocksDB I~ 5 ;.
foreground flows 1/0 differentiation g
% % % % select channel (ctx) <« - - §_
O
token channel §igp 4 select object (ctx)
)

Y

Channel,

oreground +
compactions

v [

File System

Implements the control algorithms for orchestrating stages (e.qg.,
tail latency control, per-application bandwidth guarantees)

Housekeeping rules

Statistic
collection

- Control API

Enforcement
rules

21

More about PAIO

PAIO paper

- Context propagation

* PAIO interfaces

- Control algorithms

» Micro and macro experiments

22

part 3

building storage data
planes

Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* Local disk bandwidth is shared, leading to I/O interference and performance variation

BLKIO

PAIO

24

Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* |ocal disk bandwidth is shared, leading to I/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs

 Cannot leverage from leftover bandwidth

PAIO

25

Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* Local disk bandwidth is shared, leading to |/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs
* (Cannot leverage from leftover bandwidth

PAIO
» Stage provides the |/O mechanisms to dynamically rate limit workflows at each instance

* |Integrating PAIO in TensorFlow did not required any code changes (LD _PRELOAD)

* (Control plane provides a proportional sharing algorithm to ensure per-application
bandwidth QoS guarantees

26

Per-application bandwidth control

Instance I3 {300 MiB/s}||Instance |4 {350 MiB/s}

[
-
-
-

~J
N
S

1,:259MiB/s

Throughput (MiB/s)
N
S
S

pRIll 421 385 341 :
MiB/s MiB/s MiB/s I1,:256M1B/s

§System configuration and workload

. » 4 working instances, each running a TensorFlow jOb

: *» Dedicated compute and memory resources

.« Disk bandwidth limited to 1GiB/s
.+ Jobs start at different times

I3 and |4 cannot meet their bandwidth targets during 31 and 34 minutes

27

Per-application bandwidth control

Instance I3 {300 MiB/s}||Instance |4 {350 MiB/s}

/U?] 0O00F oo ------ T T T R v T S e T R LT 1000 F— o - - - , —T T S
@ 14:248MiB/s . ! :
z 750 """ M T 750 """ A : i 0 e M
aSOO """ . ' i : ' @' 500 LEEETER S 15:298MiB/s : iB/§-- - oo
<= 1,:259Mi1B/s : : :
bD 2. 1 1
= 250 R 369! 1 250 |- P I,:199MiB/s 199MiB/s 200MiB/s LR
. \ _ : . MB/s MiB/s 2
§= MiB/s MiB/s I1,:256M1B/s i 200 150 150 , , .
— O O MiB/sMiB/s MiB/s 11:149M1B/S 149M1B/s 150M1B/s

0 10 20 30 40 50 55 0 40

Instances cannot be dynamically provisioned with available disk bandwidth

28

Per-application bandwidth control

Instance I3 {300 MiB/s}||Instance |4 {350 MiB/s}

~1000F - T TRV SN S A Y S N T T S R T, S —— 1000 F— ST PR - 7 —T e S

@ 1,:248MiB/s : . _______________________ : :

% T50F---- U e 750 f---- | | .

é 500F - - ' - samiskl---4 500 1,:298MiB/s E .- -

< 1,:259MiB/s Wy . : .

PR 421 385 369 1425 250 - 1\14?38/5 1\24%(3)/5 I,:199MiB/s 199MiB/s 200MiB/s

§= MiB/s MiB/s : I1,:256MiB/s iB/s i\ 150 : D :

— O O MIB/SMIB/S MIB/S 11:149M1B/S 149M1B/8 ISOMIB/S : :
0 S35 0 10 20 30 40 50 60 95

A LO00 e - () T R o S A W A AR A A AT S VA A i s ey Ik iy b b~ (8)~ = T b

foa PAIO . ! :

g 750@ 349MIB/s | A : ey @ """""

S 500F: g 384MiB/s 1,:299MiB/s 5 IB/S T T

& 296MiB/s

1)) | - .

= 250 _— . I,:198MiB/s

£ 423MIB/s — 385MiBls 245MiBJs I,:147MiB/s i

= 0 10 20 30 40 50

Time (minutes)

PAIO ensures that policies are met at all times, and whenever leftover

bandwidth is available, PAIO shares it across active instances

Tail latency control in LSM-based KVS

RocksDB
* [nterference between foreground and background tasks generates high latency spikes

* Latency spikes occur due to Lo-L1 compactions and flushes being slow or on hold

SILK
e |/O scheduler

* Allocates bandwidth for internal operations when client load is low
* Prioritizes flushes and low level compactions
* Preempts high level compactions with low level ones

 Required changing several core modules made of thousands of LoC

PAIO
 Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/0O scheduling algorithm

30

Tail latency control in LSM-based KVS

RocksDB ~

~

* Interference between foreground and background t @ Note: By propagating application-level

. | at 1 due to Ll " information to the stage, PAIO can enable
atency spikes occur due 1o Lo-L1 COmpactions ang oimiar control and performance as system-

SILK Gpemﬂc optimizations

* |/O scheduler
 Allocates bandwidth for internal operations when client load is low

/

* Prioritizes flushes and low level compactions

n]
[) D atalaala alfala) - alaala Aala A a al\V.)) ala¥la
w \/ \ \J \J C/ S A' \J V V \ \J

* Required changing several core modules made of thousands of LoC

PAIO
» Stage provides the I/0O mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* (Control plane provides a SILK-based |/O scheduling algorithm

Throughput
(KOps/s)

Mixture workload
50% read 50% write

R\

o O

,,,,,,,,,,,,,,,,,,

- [RoCkSDB | 5p=0ar 1 2 o, e 5 0, O A 06 R 1

120

Throughput: high variability due to constant flushes
and compactions

Latency
(ms)

n O n O

. System configuration and workload
. » 8 client threads and 8 background threads

.« Memory limited to 1GB and /O BW to 200MB/s |

* Bursty workload with peaks and valleys

--

~

99th |atency: high tail latency with peaks with an
average range between 3 and 15 ms

32

Mixture workload
50% read 50% write

£ 2 20 [RocksDB | & 0 5% I Mo i PN O A
%D 8 10F - -ttt | AT R AR EERL LR | /(2R R Y G |51 EETE {oER T S (B
LR EREEEEEEEEEEREERERE /i [N'd 14141 TR LAY e \
R s
— l] |
£220r [SILK i
%D 8 10 R N | o | RN PRE'Y LA '“ I ,',',T.,,',',',,',",,'1",,',',,,",',T,' i (el By A S e i A e
EZ O s
H | | |
ot | | |
2720 Pa0 ¢+ 122
--- | 1 O
5 é’ 10'---------- ********** R | R | B | | E S | S | S) ‘3 €
= i i i
0 300 600 900 1200
Time (s)

Throughput: suffers periodic throughput drops due

to accumulated backlog

0 300 600 900
Time (s)

99th |atency: low sustained tall latency

PAIO and SILK observe a 4x decrease in absolute tail latency

Data planes for Deep Learning

© o N

DL framework

Storage tiering (Monarch) S T
» Framework-agnostic storage middleware S PO
I A Yo o RN
° 1ot] ' Metadata Container ! : { ! Placement Handler !
L everages existing storage tiers of supercomputers —— = ses
* Accelerates DL training time by up to 28% and 37% In | ip,ﬁfmem T
TensorFlow and Py Tlorch ’-------------_--_-_--_-_--_-_-{_’--_-_--_-_--_-_--_---_-_--_-_--_-_--_-_--_=__’--_-_-’3_‘-’14‘?-7 """" 76"

T4 writeTm
- reade—— ¢9 1

» Decreases the operations submitted to the PFS

Parallel data prefetching (Prisma) ® T — |

 Data plane for prefetching training data samples e & Consj(mem | f ,c:onsﬁ(r_neu |
List Prisma.read(filename_1 Prisma.read(filename_n
» Significantly outperforms baseline PyTorch and TensorFlow e |
CO nf| g u rat | O n S ﬁ/ené%e_m Autotuner 1. / Thread Pog
B | o (| ey Neeetd
* Achieves similar performance as carefully engineered 1/0O cero=z20:| W8 e i cotont

optimizations in TensorFlow © Producer 1 Producer k

pread(filename_1) pread(filename_n)

v v

“Accelerating Deep Learning Training Through Transparent Storage Tiering”. Dantas et al. ACM/IEEE CCGrid 2022. F File System ﬁ
“Monarch: Hierarchical Storage Management for Deep Learning Frameworks”. Dantas et al. IEEE Cluster@Rex-10 2021.
“The Case for Storage Optimization Decoupling in Deep Learning Frameworks”. Macedo et al. IEEE Cluster@Rex-10 2021.

34

Summary and takeaways

* PAIO, a user-level framework to build custom-made storage data plane stages

 Combines ideas from Software-Defined Storage and context propagation

* Decouples system-specific optimizations to dedicated |/O layers

» User-level data planes enable similar control and I/O performance as system-
specific optimizations

 Can be applied over (a lot of) different storage scenarios ...

35

Accelerated Data Analytics and Computing Institute Seminar

Building user-level storage
data planes with PAIO

dsrhaslab

R i Ca rd O M aced o (W Overview [J Repositories 10 [Projects) Packages A Teams A People 8 & Settings
INESC TEC & University of Minho

] paio | Public % & monarch | Public

PAIO: General, Portable I/O Optimizations With Minor Application Hierarchical Storage Management for Deep Learning Frameworks

Modifications

DK ricardo.g.macedo@inesctec.pt oci s ¥2 ®bynon s

Q glthUbCOm/dSFhas|ab [cat | Public : 0 bdus Public

CaT: Content-aware Tracing and Analysis for Distributed Systems Forked from albertofaria/bdus

A framework for implementing Block Devices in User Space

) dSF—haS|abglthubIO @ Python ¥ 3 @®c

N/

] prisma | Public

A data prefetching storage data plane for accelerating DL training
performance.

@®C++ 5

mailto:ricardo.g.macedo@inesctec.pt
http://github.com/dsrhaslab
http://dsr-haslab.github.io

