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background and motivation
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Data-centric systems

•Data-centric systems have become an integral part of 
modern I/O stacks


•Good performance for these systems often requires 
storage optimizations

•Scheduling, caching, tiering, replication, …


•Optimizations are implemented in sub-optimal manner
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Challenges

Tightly coupled 
optimizations

Rigid interfaces

Application

Key-Value Store

File System

user-space

kernel-space

Kernel-level layers

Partial visibility
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Challenge #1

Tightly coupled optimizations Application

I/O Scheduling 
SILK [1]

Caching 
AC-Key [2]

Tiering 
SpanDB [3]

Checksumming 
Dong et al. [4]

Key-Value Store

File System

• I/O optimizations are single purposed


•Require deep understanding of the 
system’s internal operation model


•Require profound system refactoring


• Limited portability across systems

[1] “SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores”. Balmau et al. USENIX ATC 2019.

[2] “AC-Key: Adaptive Caching for LSM-based Key-Value Stores”. Wu et al. USENIX ATC 2020.

[3] "SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage”. Chen et al. USENIX FAST 2021.

[4] “Evolution of Development Priorities in Key-Value Stores Serving Large-scale Applications: The RocksDB Experience”. Dong et al. USENIX FAST 2021.
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Challenge #1

Tightly coupled optimizations Application

Key-Value Store

File System

• I/O optimizations are single purposed


•Require deep understanding of the 
system’s internal operation model


•Require profound system refactoring


• Limited portability across systems

I/O Scheduling 
SILK [1]

Caching 
AC-Key [2]

Tiering 
SpanDB [3]

Checksumming 
Dong et al. [4]

SILK’s I/O Scheduler 
• Reduce tail latency spikes in 

RocksDB


• Controls the interference 
between foreground and 
background tasks


• Required changing several 
modules, such as background 
operation handlers, internal 
queuing logic, and thread pools
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Challenge #1

Decoupled optimizations

Application

I/O Scheduling 
SILK [1]

Caching 
AC-Key [2]

Tiering 
SpanDB [3]

Checksumming 
Dong et al. [4]

Key-Value Store

File System

Dedicated I/O layer
I/O Scheduling Caching

Tiering Checksumming

• I/O optimizations should be 
disaggregated from the internal logic


•Moved to a dedicated I/O layer


•Generally applicable


•Portable across different scenarios
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Challenge #2

Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

•Decoupled optimizations lose granularity 
and internal application knowledge


• I/O layers communicate through rigid 
interfaces


•Discard information that could be used 
to classify and differentiate requests
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Challenge #2

Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

•Decoupled optimizations lose granularity 
and internal application knowledge


• I/O layers communicate through rigid 
interfaces


•Discard information that could be used 
to classify and differentiate requests

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

75476
read

4096

1

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

75482
write
4096

2

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

75490
read

4096

3
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Challenge #2

Information propagation
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75476
read

4096

1

foreground task 

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75482
write
4096

2

flush

 Key-value store operation 
• Workflow ID:

• Operation type:

• Operation size:

• Context:

75490
read

4096

3

compaction L1-L2

•Application-level information must be 
propagated throughout layers


•Decoupled optimizations can provide 
the same level of control and 
performance
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Challenge #3

Kernel-level layers Application

Key-Value Store

File System

Block Device

user-space
kernel-space

HDD SSD PM

•Propagating context to kernel requires 
breaking user-to-kernel and kernel-
internal APIs


•Kernel-level development is more 
restricted and error-prone


•Optimizations would be ineffective 
under kernel-bypass storage stacks 
(e.g., SPDK, PMDK)

Page 
Cache
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Challenge #3

Kernel-level layers Application

Key-Value Store

File System

Block Device

Page 
Cache

user-space
kernel-space

HDD SSD PM

•Propagating context to kernel requires 
breaking user-to-kernel and kernel-
internal APIs


•Kernel-level development is more 
restricted and error-prone


•Optimizations would be ineffective 
under kernel-bypass storage stacks 
(e.g., SPDK, PMDK)
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Challenge #3

Actuate at user-level

Application

Key-Value Store

File System

Block Device

user-space
kernel-space

HDD SSD PM

•Optimizations should be implemented 
at a dedicated user-level layer


•Promote portability across different 
systems and layers


•Ease information propagation 
throughout I/O layers

Dedicated I/O layer

Page 
Cache
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Challenge #4

File System

Application

Key-Value Store

Application

Key-Value Store

Application

Key-Value Store

Partial visibility

•Optimizations are oblivious of other 
systems


• Lack of coordination


•Conflicting optimizations, I/O 
contention, and performance 
variation

! Note: the storage backend can either be local 
(e.g., ext4, xfs) or distributed (e.g., Lustre, GPFS)
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Challenge #4

File System

Application Application Application

Global I/O control

•Optimizations should be aware of 
the surrounding system stack


•Operate in coordination


•Holistic control of I/O workflows and 
shared resources

Key-Value Store Key-Value Store Key-Value Store



Part 2

designing a storage data 
plane framework

16
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PAIO

• User-level framework for building portable and generally applicable optimizations


• Adopts ideas from Software-Defined Storage [6]


• I/O optimizations are implemented outside applications as data plane stages 

• Stages are controlled through a control plane for coordinated access to resources 

• Enables the propagation of application-level information through context propagation 

• Porting I/O layers to use PAIO requires none to minor code changes

[5] “PAIO: General, Portable I/O Optimizations with Minor Application Modifications”. Macedo et al. USENIX FAST 2022.

[6] “A Survey and Classification of Software-Defined Storage Systems”. Macedo et al. ACM CSUR 2020.
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PAIO design

User-level 
(#3)

Information 
propagation (#2)

Dedicated I/O 
layer (#1)

Global visibility 
(#4)
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PAIO design
Control interface 
• Enables the control plane to 

orchestrate the stage 

• Continuously monitors and fi


Stage interface 
• Access point for applications

• Forwards application 

requests to PAIO stages

Diff
• Classififf
• Context propagation

• Diffff

Enforcement module 
• Applies the actual I/O mechanisms over requests

• Organized in Channels and Enforcement objects



Stage interface 
• Access point for applications

• Forwards application 

requests to PAIO stages
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PAIO design
Control interface 
• Enables the control plane to 

orchestrate the stage 

• Continuously monitors and fi



Differentiation module 
• Classifies and differentiates requests

• Context propagation

• Different levels of differentiation

Enforcement module 
• Applies the actual I/O mechanisms over requests

• Organized in Channels and Enforcement objects



Stage interface 
• Access point for applications

• Forwards application 

requests to PAIO stages
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PAIO design
Control interface 
• Enables the control plane to 

orchestrate the stage 

• Continuously monitors and fi



Diff
• Classififf
• Context propagation

• Diffff

Enforcement module 
• Applies the actual I/O mechanisms over requests

• Organized in Channels and Enforcement objects



Stage interface 
• Access point for applications

• Forwards application 

requests to PAIO stages
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PAIO design
Diff
• Classififf
• Context propagation

• Diffff

Enforcement module 
• Applies the actual I/O mechanisms over requests

• Organized in Channels and Enforcement objects

Control interface 
• Enables the control plane to 

orchestrate the stage 

• Continuously monitors and fine-

tunes the stage
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PAIO design

Policy: limit the rate of RocksDB’s flush operations to X MiB/s

• I/O differentiation 

• I/O enforcement 

•Control plane interaction
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I/O differentiation

Identify the origin of POSIX operations (i.e., 
foreground, compaction, or flush operations)
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I/O differentiation

Context {

workflow-id : 75756,

type        : write,

context     : flush,

size        : 4096,

…


}
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I/O differentiation

Context {

workflow-id : 75756,

type        : write,

context     : flush,

size        : 4096,

…


}
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I/O enforcement

PAIO currently supports Noop 
and DRL enforcement objects
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I/O enforcement

Requests return to their 
original I/O path
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Control plane interaction
Housekeeping rulesDifferentiation rules

Statistic 
collection

Enforcement 
rules

Implements the control algorithms for orchestrating 
stages (e.g., tail latency control, per-application 

bandwidth guarantees)



Part 3

building storage data 

planes

30
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Tail latency control in LSM-based KVS
RocksDB 
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold


SILK 
• I/O scheduler


• Allocates bandwidth for internal operations when client load is low

• Prioritizes flushes and low level compactions

• Preempts high level compactions with low level ones


• Required changing several core modules made of thousands of LoC


PAIO 
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows


• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm
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Tail latency control in LSM-based KVS
RocksDB 
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold


SILK 
• I/O scheduler


• Allocates bandwidth for internal operations when client load is low 
• Prioritizes flushes and low level compactions 
• Preempts high level compactions with low level ones


• Required changing several core modules made of thousands of LoC


PAIO 
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows


• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm

!       Note: By propagating application-level 
information to the stage, PAIO can enable 
similar control and performance as system-
specific optimizations
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Mixture workload
50% read 50% write
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Throughput: high variability due to constant flushes 
and compactions

99th latency: high tail latency with peaks with an 
average range between 3 and 15 ms

System configuration and workload
• 8 client threads and 8 background threads

• Memory limited to 1GB and I/O BW to 200MB/s

• Bursty workload with peaks and valleys
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Throughput: suffers periodic throughput drops due 
to accumulated backlog

99th latency: low and sustained tail latency

Mixture workload
50% read 50% write
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PAIO and SILK observe a 4x decrease in absolute tail latency

Mixture workload
50% read 50% write
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Per-application bandwidth control
ABCI supercomputer 
• Jobs can be co-located in the same compute node

• Each job runs with dedicated CPU cores, memory, GPU, and storage quota

• Local disk bandwidth is still shared, leading to I/O interference and performance variation


BLKIO 
• cgroup’s block I/O controller allows static rate limiting read and write operations 

• Adjusting the rate requires stopping and restarting jobs

• Cannot leverage from leftover bandwidth


PAIO 
• Stage provides the I/O mechanisms to dynamically rate limit workflows at each instance


• Integrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

• Control plane provides a proportional sharing algorithm to ensure per-application bandwidth 

QoS guarantees
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Per-application bandwidth control
ABCI supercomputer 
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Per-application bandwidth control
ABCI supercomputer 
• Jobs can be co-located in the same compute node

• Each job runs with dedicated CPU cores, memory, GPU, and storage quota

• Local disk bandwidth is shared leading to I/O interference and performance variation


BLKIO 
• cgroup’s block I/O controller allows static rate limiting read and write operations 

• Adjusting the rate requires stopping and restarting jobs

• Cannot leverage from leftover bandwidth


PAIO 
• Stage provides the I/O mechanisms to dynamically rate limit workflows at each instance


• Integrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

• Control plane provides a proportional sharing algorithm to ensure per-application 

bandwidth QoS guarantees
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Per-application bandwidth control
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System configuration and workload
• 4 working instances, each running a TensorFlow job

• Dedicated compute and memory resources

• Disk bandwidth limited to 1GiB/s

• Jobs start at different times 

Instance I1 {150 MiB/s} Instance I2 {200 MiB/s}

Instance I3 {300 MiB/s} Instance I4 {350 MiB/s}

I3 and I4 cannot meet their bandwidth targets during 31 and 34 minutes
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Instances cannot be dynamically provisioned with available disk bandwidth

Instance I1 {150 MiB/s} Instance I2 {200 MiB/s}

Instance I3 {300 MiB/s} Instance I4 {350 MiB/s}
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Per-application bandwidth control
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PAIO ensures that policies are met at all times, and whenever leftover 
bandwidth is available, PAIO shares it across active instances

Instance I1 {150 MiB/s} Instance I2 {200 MiB/s}

Instance I3 {300 MiB/s} Instance I4 {350 MiB/s}
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Storage data planes for deep learning

[7] “Accelerating Deep Learning Training Through Transparent Storage Tiering”. Dantas et al. ACM/IEEE CCGrid 2022.

[8] “Monarch: Hierarchical Storage Management for Deep Learning Frameworks”. Dantas et al. IEEE Cluster@Rex-IO 2021.

[9] “The Case for Storage Optimization Decoupling in Deep Learning Frameworks”. Macedo et al. IEEE Cluster@Rex-IO 2021.
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• Framework-agnostic storage middleware
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• Accelerates DL training time by up to 28% and 37% in 

TensorFlow and PyTorch

• Decreases the operations submitted to the PFS


Parallel data prefetching (Prisma) 
• Data plane for prefetching training data samples

• Significantly outperforms baseline PyTorch and 

TensorFlow configurations

• Achieves similar performance as carefully engineered 

I/O optimizations in TensorFlow
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Summary and takeaways

• PAIO, a user-level framework to build custom-made storage data plane stages


• Combines ideas from Software-Defined Storage and context propagation


• Decouples system-specific optimizations to dedicated I/O layers


• User-level data planes enable similar control and I/O performance as system-

specific optimizations


• Can be applied over (a lot of) different storage scenarios …



Q & A


Ricardo Macedo

ricardo.g.macedo@inesctec.pt

github.com/dsrhaslab

dsr-haslab.github.io
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