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Part 1

background and motivation




Data-centric systems

* Data-centric systems have become an integral part of
modern I/O stacks

.mongo
* Good performance for these systems often requires
storage optimizations @Xnet O PyTorch

* Scheduling, caching, tiering, replication, ... . ’

* Optimizations are implemented in sub-optimal manner % kafka
é (.) cassandra
O
e, GO G
Lu-stre , ceph GFS'
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O Partial visibility

o Tightly coupled Application
optimizations l l

Key-Value Store
______________ l lll e Kernel-level Iayers

@ Rigid interfaces File System




Challenge #1

& Tightly coupled optimizations Application

l l

* |/O optimizations are single purposed
Key-Value Store
* Require deep understanding of the "1/0 Scheduling [ Caching
system’s internal operation model . SILK[] f|  AC-Key[2]
| | — (o —
* Require profound system refactoring SpanDB [3 hoif\';seﬂﬂ]"g
 Limited portability across systems l l l l

File System

“SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores”. Balmau et al. USENIX ATC 2019.

“AC-Key: Adaptive Caching for LSM-based Key-Value Stores”. Wu et al. USENIX ATC 2020.

"SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage”. Chen et al. USENIX FAST 2021.

“Evolution of Development Priorities in Key-Value Stores Serving Large-scale Applications: The RocksDB Experience”. Dong et al. USENIX FAST 2021.
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Challenge #1

€ Tightly coupled optimizations
* |/O optimizations are single purposed

* Require deep understanding of the
system’s internal operation model

* Require profound system refactoring

 Limited portability across systems

Application

l

l

Key-Value Store

~

1/0 Scheduling Caching
SILK [1] | AC-Key [2]
( N
Tiering Checksumming
SpanDB [3] Dong et al. [4]
\_ J L

.

Voo

File System

R

]

SILK’s I/0 Scheduler

* Reduce tail latency spikes in
RocksDB

 Controls the interference
between foreground and
background tasks

* Required changing several
modules, such as background
operation handlers, internal
queuing logic, and thread pools



Challenge #1

& Decoupled optimizations

* |/O optimizations should be
disaggregated from the internal logic

* Moved to a dedicated |/O layer
* Generally applicable

e Portable across different scenarios

Application

l l

Key-Value Store

--------------------------------------------------------------

. Dedicated I/0 layer
;

File System




Application

l l

© Rigid interfaces

* Decoupled optimizations lose granularity Key-Value Store
and internal application knowledge ) e ——— .
. . 20NN TN TR R
* |/O layers communicate through rigid —
interfaces " compaction flows | ( flush flows
ooy |

e Discard information that could be used & l I : 1 I :

File System

to classify and differentiate requests
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Application | {Kervaiue shre speration;
1gid | R .« Workflow ID: 75476 5
e ngld Interfaces l l ," x Operation type: read
. '« Operation size: [4096
» Decoupled optimizations lose granularity Key-Value Store | T
and internal application knowledge ) - .
foreground flows;
- . Vb s . Key-value store operation:
* |/0O layers communicate through rigid — 3 S 1 1 - Workflow ID: 75482 ;
interfaces " compaction flows ) ( flush flowsx," - Operat!on t)llpe: write
¢ ¢ ¢ Ki + + Operation size: [ 4096 ;
* Discard information that could be used l I 1 I

to classify and differentiate requests

. Key-value store operation:
File System  + Workflow ID: 75490 5
y * Operation type: read :

' . Operation size: 14006

------------------------------




® Information propagation

* Application-level information must be
propagated throughout layers

* Decoupled optimizations can provide
the same level of control and
performance

Application

l

24
24
4
4
4

' Key-value store operation
+ « Workflow ID: 75476 :

+ + Operation type: read
+ + Operation size: [4096

Key-Value Stqi"e
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foreground flows,’

IRIRTE.
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compaction flows
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flush fi ! '
us OWS:] '+ Context:

+ + Context: F{JENe[(IIREETY !
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1 \ « Workflow ID: 75482

- Operation type: write
« Operation size: | 4096

1 4

l

=

; Key-value store operation:
'+« Workflow ID: 75490

 Operation type: read
« Operation size: | 4096

-----------------------------



Application

© Kernel-level layers

' '
* Propagating context to kernel requires Key-Value Store
breaking user-to-kernel and kernel-
internalAPIs T l """""""" l """"""" l """"""" l """""
» Kernel-level development is more Page R File System

¢ }

restricted and error-prone

- | | Block Device

* Optimizations would be ineffective | |
under kernel-bypass storage stacks e :
(e.g., SPDK, PMDK) @ @Q” Oooon; |

---------------------------------------------------------



Application

) Kernel-level layers

' '

* Propagating context to kernel requires Key-Value Store [«
breaking user-to-kernel and kernel-
internalAPIs T l """""""" l """"""" l """"""" l """""

» Kernel-level development is more Page Bus File System

¢ '

restricted and error-prone

L , | Block Device
* Optimizations would be ineffective | i '
under kernel-bypass storage stacks SR S S
(e.g., SPDK, PMDK) @ $ Tm

---------------------------------------------------------



Application
| l
Key-Value Store

& Actuate at user-level

» Optimizations should be implemented ' ' ' '
at a dedicated user-level layer Dedicated 1/0 layer

e Promote portability across different l --------------- l -------------- l -------------- l ----------

systems and layers -
y y Page b= File System

* Ease information propagation v '
throughout I/O layers Block Device
! !

---------------------------------------------------------

---------------------------------------------------------



© Partial visibility

---------------------------------------------------------------------------------------------------------------------

* Optimizations are oblivious of other | Application | Application | i| Application
systems ) | A | SR |

Key-Value Store Key-Value Store | Key-Value Store

---------------------------------------------------------------------------------------------------------------------

ooy Vv vy vy

e | ack of coordination

* Conflicting optimizations, 1/0
contention, and performance
variation

File System

( Note: the storage backend can either be Iocal)
)

(e.g., ext4, xfs) or distributed (e.g., Lustre, GPFS




® Gilobal I/0 control

* Optimizations should be aware of
the surrounding system stack

* Operate in coordination

* Holistic control of I/O workflows and
shared resources

T

| Key-Value Store \

.
e

---------------------------------------------------------------------------------------------------------------------

Application
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Part 2

designing a storage data
plane framework




PAIO

 User-level framework for building portable and generally applicable optimizations
* Adopts ideas from Software-Defined Storage [6]

* |/O optimizations are implemented outside applications as data plane stages

o Stages are controlled through a control plane for coordinated access to resources
 Enables the propagation of application-level information through context propagation

* Porting I/O layers to use PAIO requires none to minor code changes

[5] “PAIO: General, Portable 1/0 Optimizations with Minor Application Modifications”. Macedo et al. USENIX FAST 2022.
[6] “A Survey and Classification of Software-Defined Storage Systems”. Macedo et al. ACM CSUR 2020.
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Information
propagation (#2)

User-level
(#3)

: I/0 differentiation |
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File System

Dedicated 1/0
layer (#1)

Global visibility

o—o Workflows

—— Monitoring flows
- - - Rules
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Stage interface

» Access point for applications

* Forwards application
requests to PAIO stages

_

File System

1O.en iforcement
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File System

Differentiation module
- Classifies and differentiates requests

- Context propagation
» Different levels of differentiation

1O.en iforcement

o o
[ ]
[ ]
[ ]

Channel)

I ’.,

o—o Workftlows

—— Monitoring flows
- - - Rules



1O.en iforcement

o o
] o—o Workflows
[

Channel)

I ’.,

File System

—— Monitoring flows

- - - Rules

Enforcement module
» Applies the actual I/O mechanisms over requests

 Organized in Channels and Enforcement objects




File System

1O.en iforcement

o o
[ ]
[ ]
[ ]

Channel)

I ’.,

Control interface
- Enables the control plane to

orchestrate the stage

» Continuously monitors and fine-
tunes the stage

o—o Workftlows

—— Monitoring flows

- - - Rules



Application
‘ A v ‘ PAIO Stage «'g."';‘~~J_
= = = - O en
*1/0 differentiation RocksDB —— ) )
“Toreground flows 1/0 differentiation < -
% % % % -select channel (ctx) <«-- §' ‘ ‘ ‘ .I_’ g -7 %
< [5Q > — —_
O I/ 0 enforcement ol Nl | flush flows / U L =)
N k select object (ctx) j-_-;
% flush channel; \ ~ g
= = A + oregroun ® r—
* Control plane interaction |[7~""pijoStage eompactons | HEI0CH2 S [SQ = <>~
e e I s e | B B o 1
File System O . T

Policy: limit the rate of RocksDB'’s flush operations to X MiB/s



Application

A \4
RocksDB

I/0 differentiation

[select_channel (ctx)

token
flush

oreground +
compactions

A \4

File System

ldentify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

Channel,

select object (ctx)

Control API



Application

A \4
RocksDB
Toreground flows 1/0 differentiation =
% % % % select channel (ctx) <- - §'
O
token channel /{ select object (ctx)
channel,
N
channel, g
~
=
Context { O
workf low—1d : 75756,
type : write,
context : flush,
size : 4096,
I3

Control API



Application

A

\4

RocksDB

$Es

compaction flows

ush flows
Y
\/

Context {
workf low-1d
type
context
size

: /57560,
: write,
: flush,
: 4090,

I/0 differentiation

select channel (ctx)

N

~

S
ig
O

token  channel select object (ctx)

3

flush channel;

Y

Channel,
Control API

oreground +

, channel,
compactions



Application

A \4
RocksDB

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Channe

token  channel select object (ctx)

/N

Channel,

channel,

Control API

channel,

PAIO currently supports Noop
and DRL enforcement objects




Application

A v Le TS
RocksDB

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Channe

token channel

/N

Channel,

select object (ctx)
channel,

Control API

channel,

File System

Requests return to their
original I/0 path




Differentiation rules Housekeeping rules

Application
A \4

PAIO Stage SAMEPRE
RocksDB . — ) Mt
Toreground flows I/0 differentiation < E
% % % % select channel (ctx) <- - §' -7 <
N -
O — Statistic
token channel / select object (ctx) § collection
channel,; ) =
N Q S
channel, g - =
S
A v r .
File System O -
Enforcement
rules

Implements the control algorithms for orchestrating
stages (e.q., tail latency control, per-application
bandwidth guarantees)




Part 3

building storage data
planes




Tail latency control in LSM-based KVS

RocksDB
* |nterference between foreground and background tasks generates high latency spikes

 [atency spikes occur due to Lo-L1 compactions and flushes being slow or on hold

SILK
e |/O scheduler

* Allocates bandwidth for internal operations when client load is low
* Prioritizes flushes and low level compactions
* Preempts high level compactions with low level ones

 Required changing several core modules made of thousands of LoC

PAIO
 Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/0O scheduling algorithm

31



Tail latency control in LSM-based KVS

RocksDB ~

(
 [nterference between foreground and background t @ Note: By propagating application-level
information to the stage, PAIO can enable

similar control and performance as system-
specific optimizations
SILK P P Y

* |/O scheduler
 Allocates bandwidth for internal operations when client load is low

* Latency spikes occur due to Lo-L1 compactions an(

* Prioritizes flushes and low level compactions

| |
[ ) D aVtaltaal a alfala ) - altaala Aala A a al\V. ) ) ala¥la
w L/ \ S \J O/ \J A' \J V V \ \J

* Required changing several core modules made of thousands of LoC

PAIO
* Stage provides the I/0 mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/0O scheduling algorithm

32



Throughput

Mixture workload

50% read 50% write

(KOps/s)

—_— NI

o O

| ROCKSDB | 71 m T 0 T e B A e ooy e e R

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Latency
(ms)

1200

Throughput: high variability due to constant flushes
and compactions

n O n O

. System configuration and workload
. * 8 client threads and 8 background threads

. Memory limited to 1GB and I/0 BW to 200MB/s

* Bursty workload with peaks and valleys

--------------------------------------------------------------------------------

-----
~

------

R AR AR AR SRR AR EARE

99th Jatency: high tail latency with peaks with an
average range between 3 and 15 ms

33



Mixture workload

50% read 50% write

£%220r [ RocksDB | ¢

%D 8 10 '_',',,',',',,',',',,',',f,',',f,',',f,',',,',',',,',‘ AR Y N[ ,'
1 W J

— ]

, ——
EZ20F [ SILK | per i )

%0 8 10 I " I 1 Lo | B
I SR——— ?

— ]

1200

Throughput: suffers periodic throughput drops due
to accumulated backlog

99th |atency: low and sustained talil latency

34
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Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* Local disk bandwidth is still shared, leading to I/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs
* (Cannot leverage from leftover bandwidth

PAIO
» Stage provides the /O mechanisms to dynamically rate limit workflows at each instance

* |ntegrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

* (Control plane provides a proportional sharing algorithm to ensure per-application bandwidth

QoS guarantees
36



Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* |Local disk bandwidth is shared leading to I/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs

 Cannot leverage from leftover bandwidth

PAIO
» Stage provides the I/0 mechanisms to dynamically rate limit workflows at each instance

* |ntegrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

* (Control plane provides a proportional sharing algorithm to ensure per-application bandwidth
QoS guarantees
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Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* |Local disk bandwidth is shared leading to I/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs
 (Cannot leverage from leftover bandwidth

PAIO
* Stage provides the I/0 mechanisms to dynamically rate limit workflows at each instance

* |ntegrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

* (Control plane provides a proportional sharing algorithm to ensure per-application
bandwidth QoS guarantees
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Instance |1 {150 MiB/s} jInstance |2 {200 MiB/s}

Instance I3 {300 MiB/s}||Instance |4 {350 MiB/s}

[
-
-
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N
S

1,:259MiB/s
250 BRI RTE

MiB/s MiB/s - I1,:256M1B/s
0

Throughput (MiB/s)
N
S
S

---------------------------------------------------------------------------------------

0
System configuration and workload
§ * 4 working instances, each running a TensorFlow jOb
. Dedicated compute and memory resources
. » Disk bandwidth limited to 1GiB/s
.« Jobs start at different times

-------------------------------------------------------------------------------------------

I3 and |4 cannot meet their bandwidth targets during 31 and 34 minutes
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Instances cannot be dynamically provisioned with available disk bandwidth
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Storage data planes for deep learning

Storage tiering (Monarch)

DL framework

* Framework-agnostic storage middleware T TR T TR

* Leverages existing storage tiers of supercomputers o. g* evaio Monarjh — ;

* Accelerates DL training time by up to 28% and 37% in 'Mgéa.-;.;;aaﬁ;;.;.;;" ;'"'s't;;a;,;na;;;;;;r;y'“‘g " Placement Handler
TensorFlow and PyTorch /é*\,ﬁ & 555,

» Decreases the operations submitted to the PFS 5—--"39-f‘f"-”-a-tf'-"-'ﬁy-f-‘}a-'_f’?f_h-_--5_ E{-_--_-_--E-“_--_---_¥-_-_-eﬁ_gﬁ_-._-_.._5_ ppfy/dpm

T4 write——
O T reade—— ¢9 I

. .
Parallel data prefetching (Prisma)

e Data plane for prefetching training data samples © 5—; DL Framework J

A T A
Consumer 1 Consumer j

e Significantly outperforms baseline PyTorch and T | © pramascctnenane P sadioname_ 1)

filename 1

TensorFlow configurations faname?

filename _m

Autotuner e ETETTT EETErr—

algorithm: omoe-e- Bt IR Producer (
set_n_threads();

* Achieves similar performance as carefully engineered (S

. . . . @ set_buffer_size(); __ \_F_’(qc_:l_u_qg(_k_’
/O optimizations in TensorFlow QG
@ Producer 1 Producer k
pread(ﬁlelvame_v pread(ﬁleiame_n)
[7] “Accelerating Deep Learning Training Through Transparent Storage Tiering”. Dantas et al. ACM/IEEE CCGrid 2022. F Filo Systom ﬁ
[8] “Monarch: Hierarchical Storage Management for Deep Learning Frameworks”. Dantas et al. IEEE Cluster@Rex-10 2021.

[9] “The Case for Storage Optimization Decoupling in Deep Learning Frameworks”. Macedo et al. IEEE Cluster@Rex-I0O 2021.



Summary and takeaways

* PAIO, a user-level framework to build custom-made storage data plane stages

» Combines ideas from Software-Defined Storage and context propagation

* Decouples system-specific optimizations to dedicated |/O layers

* User-level data planes enable similar control and I/O performance as system-
specific optimizations

* Can be applied over (a lot of) different storage scenarios ...
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