User-level Software-
Defined Storage
Data Planes

Ricardo Macedo
INESC TEC & U. Minho

Part 1

background and motivation

Data-centric systems

* Data-centric systems have become an integral part of
modern I/O stacks

.mongo
* Good performance for these systems often requires
storage optimizations @Xnet O PyTorch

* Scheduling, caching, tiering, replication, ’

* Optimizations are implemented in sub-optimal manner % kafka
é (.) cassandra
O
e, GO G
Lu-stre , ceph GFS'
©y Seark’ G iEdbms

O Partial visibility

o Tightly coupled Application
optimizations l l

Key-Value Store
______________ l lll e Kernel-level Iayers

@ Rigid interfaces File System

Challenge #1

& Tightly coupled optimizations Application

l l

* |/O optimizations are single purposed
Key-Value Store
* Require deep understanding of the "1/0 Scheduling [Caching
system’s internal operation model . SILK[] f| AC-Key[2]
| | — (o —
* Require profound system refactoring SpanDB [3 hoif\';seﬂﬂ]"g
 Limited portability across systems l l l l

File System

“SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores”. Balmau et al. USENIX ATC 2019.

“AC-Key: Adaptive Caching for LSM-based Key-Value Stores”. Wu et al. USENIX ATC 2020.

"SpanDB: A Fast, Cost-Effective LSM-tree Based KV Store on Hybrid Storage”. Chen et al. USENIX FAST 2021.

“Evolution of Development Priorities in Key-Value Stores Serving Large-scale Applications: The RocksDB Experience”. Dong et al. USENIX FAST 2021.

B WN =

Challenge #1

€ Tightly coupled optimizations
* |/O optimizations are single purposed

* Require deep understanding of the
system’s internal operation model

* Require profound system refactoring

 Limited portability across systems

Application

l

l

Key-Value Store

~

1/0 Scheduling Caching
SILK [1] | AC-Key [2]
(N
Tiering Checksumming
SpanDB [3] Dong et al. [4]
_ J L

.

Voo

File System

R

]

SILK’s I/0 Scheduler

* Reduce tail latency spikes in
RocksDB

 Controls the interference
between foreground and
background tasks

* Required changing several
modules, such as background
operation handlers, internal
queuing logic, and thread pools

Challenge #1

& Decoupled optimizations

* |/O optimizations should be
disaggregated from the internal logic

* Moved to a dedicated |/O layer
* Generally applicable

e Portable across different scenarios

Application

l l

Key-Value Store

--

. Dedicated I/0 layer
;

File System

Application

l l

© Rigid interfaces

* Decoupled optimizations lose granularity Key-Value Store
and internal application knowledge) e ——— .
. . 20NN TN TR R
* |/O layers communicate through rigid —
interfaces " compaction flows | (flush flows
ooy |

e Discard information that could be used & l I : 1 I :

File System

to classify and differentiate requests

- N
DS "~

Application | {Kervaiue shre speration;
1gid | R .« Workflow ID: 75476 5
e ngld Interfaces l l ," x Operation type: read
. '« Operation size: [4096
» Decoupled optimizations lose granularity Key-Value Store | T
and internal application knowledge) - .
foreground flows;
- . Vb s . Key-value store operation:
* |/0O layers communicate through rigid — 3 S 1 1 - Workflow ID: 75482 ;
interfaces " compaction flows) (flush flowsx," - Operat!on t)llpe: write
¢ ¢ ¢ Ki + + Operation size: [4096 ;
* Discard information that could be used l I 1 I

to classify and differentiate requests

. Key-value store operation:
File System + Workflow ID: 75490 5
y * Operation type: read :

' . Operation size: 14006

® Information propagation

* Application-level information must be
propagated throughout layers

* Decoupled optimizations can provide
the same level of control and
performance

Application

l

24
24
4
4
4

' Key-value store operation
+ « Workflow ID: 75476 :

+ + Operation type: read
+ + Operation size: [4096

Key-Value Stqi"e

-

_

foreground flows,’

IRIRTE.

'

?

_

¥

'

é -)
compaction flows

v

_-J

flush fi ! '
us OWS:] '+ Context:

+ + Context: F{JENe[(IIREETY !

' 4

- oy
.....
N

1 \ « Workflow ID: 75482

- Operation type: write
« Operation size: | 4096

1 4

l

=

; Key-value store operation:
'+« Workflow ID: 75490

 Operation type: read
« Operation size: | 4096

Application

© Kernel-level layers

' '
* Propagating context to kernel requires Key-Value Store
breaking user-to-kernel and kernel-
internalAPIs T l """""""" l """"""" l """"""" l """""
» Kernel-level development is more Page R File System

¢ }

restricted and error-prone

- | | Block Device

* Optimizations would be ineffective | |
under kernel-bypass storage stacks e :
(e.g., SPDK, PMDK) @ @Q” Oooon; |

Application

) Kernel-level layers

' '

* Propagating context to kernel requires Key-Value Store [«
breaking user-to-kernel and kernel-
internalAPIs T l """""""" l """"""" l """"""" l """""

» Kernel-level development is more Page Bus File System

¢ '

restricted and error-prone

L , | Block Device
* Optimizations would be ineffective | i '
under kernel-bypass storage stacks SR S S
(e.g., SPDK, PMDK) @ $ Tm

Application
| l
Key-Value Store

& Actuate at user-level

» Optimizations should be implemented ' ' ' '
at a dedicated user-level layer Dedicated 1/0 layer

e Promote portability across different l --------------- l -------------- l -------------- l ----------

systems and layers -
y y Page b= File System

* Ease information propagation v '
throughout I/O layers Block Device
! !

© Partial visibility

* Optimizations are oblivious of other | Application | Application | i| Application
systems) | A | SR |

Key-Value Store Key-Value Store | Key-Value Store

ooy Vv vy vy

e | ack of coordination

* Conflicting optimizations, 1/0
contention, and performance
variation

File System

(Note: the storage backend can either be Iocal)
)

(e.g., ext4, xfs) or distributed (e.g., Lustre, GPFS

® Gilobal I/0 control

* Optimizations should be aware of
the surrounding system stack

* Operate in coordination

* Holistic control of I/O workflows and
shared resources

T

| Key-Value Store \

.
e

Application

ooy

1 1

FesREPrge gy

Application

| Key-Value Store \

Voovoov

Application

1

‘

Vool

4

| Key-Value Store \

LLRAL R 1r A 3

File System

Part 2

designing a storage data
plane framework

PAIO

 User-level framework for building portable and generally applicable optimizations
* Adopts ideas from Software-Defined Storage [6]

* |/O optimizations are implemented outside applications as data plane stages

o Stages are controlled through a control plane for coordinated access to resources
 Enables the propagation of application-level information through context propagation

* Porting I/O layers to use PAIO requires none to minor code changes

[5] “PAIO: General, Portable 1/0 Optimizations with Minor Application Modifications”. Macedo et al. USENIX FAST 2022.
[6] “A Survey and Classification of Software-Defined Storage Systems”. Macedo et al. ACM CSUR 2020.

17

Information
propagation (#2)

User-level
(#3)

: I/0 differentiation |
Ry A N ot W, o gl
ro enforcement<
§ayd o om & 1%

File System

Dedicated 1/0
layer (#1)

Global visibility

o—o Workflows

—— Monitoring flows
- - - Rules

(#4)

Stage interface

» Access point for applications

* Forwards application
requests to PAIO stages

_

File System

1O.en iforcement

o o
[]
[]
[]

hannel]

)
Q
=
=

<

O

o
]
]
-

o—o Workftlows

—— Monitoring flows
- - - Rules

File System

Differentiation module
- Classifies and differentiates requests

- Context propagation
» Different levels of differentiation

1O.en iforcement

o o
[]
[]
[]

Channel)

I ’.,

o—o Workftlows

—— Monitoring flows
- - - Rules

1O.en iforcement

o o
] o—o Workflows
[

Channel)

I ’.,

File System

—— Monitoring flows

- - - Rules

Enforcement module
» Applies the actual I/O mechanisms over requests

 Organized in Channels and Enforcement objects

File System

1O.en iforcement

o o
[]
[]
[]

Channel)

I ’.,

Control interface
- Enables the control plane to

orchestrate the stage

» Continuously monitors and fine-
tunes the stage

o—o Workftlows

—— Monitoring flows

- - - Rules

Application
‘ A v ‘ PAIO Stage «'g."';‘~~J_
= = = - O en
*1/0 differentiation RocksDB ——))
“Toreground flows 1/0 differentiation < -
% % % % -select channel (ctx) <«-- §' ‘ ‘ ‘ .I_’ g -7 %
< [5Q > — —_
O I/ 0 enforcement ol Nl | flush flows / U L =)
N k select object (ctx) j-_-;
% flush channel; \ ~ g
= = A + oregroun ® r—
* Control plane interaction |[7~""pijoStage eompactons | HEI0CH2 S [SQ = <>~
e e I s e | B B o 1
File System O . T

Policy: limit the rate of RocksDB'’s flush operations to X MiB/s

Application

A \4
RocksDB

I/0 differentiation

[select_channel (ctx)

token
flush

oreground +
compactions

A \4

File System

ldentify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

Channel,

select object (ctx)

Control API

Application

A \4
RocksDB
Toreground flows 1/0 differentiation =
% % % % select channel (ctx) <- - §'
O
token channel /{ select object (ctx)
channel,
N
channel, g
~
=
Context { O
workf low—1d : 75756,
type : write,
context : flush,
size : 4096,
I3

Control API

Application

A

\4

RocksDB

$Es

compaction flows

ush flows
Y
\/

Context {
workf low-1d
type
context
size

: /57560,
: write,
: flush,
: 4090,

I/0 differentiation

select channel (ctx)

N

~

S
ig
O

token channel select object (ctx)

3

flush channel;

Y

Channel,
Control API

oreground +

, channel,
compactions

Application

A \4
RocksDB

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Channe

token channel select object (ctx)

/N

Channel,

channel,

Control API

channel,

PAIO currently supports Noop
and DRL enforcement objects

Application

A v Le TS
RocksDB

Toreground flows 1/0 differentiation
% % % % [select_channel(ctx)

Channe

token channel

/N

Channel,

select object (ctx)
channel,

Control API

channel,

File System

Requests return to their
original I/0 path

Differentiation rules Housekeeping rules

Application
A \4

PAIO Stage SAMEPRE
RocksDB . —) Mt
Toreground flows I/0 differentiation < E
% % % % select channel (ctx) <- - §' -7 <
N -
O — Statistic
token channel / select object (ctx) § collection
channel,;) =
N Q S
channel, g - =
S
A v r .
File System O -
Enforcement
rules

Implements the control algorithms for orchestrating
stages (e.q., tail latency control, per-application
bandwidth guarantees)

Part 3

building storage data
planes

Tail latency control in LSM-based KVS

RocksDB
* |nterference between foreground and background tasks generates high latency spikes

 [atency spikes occur due to Lo-L1 compactions and flushes being slow or on hold

SILK
e |/O scheduler

* Allocates bandwidth for internal operations when client load is low
* Prioritizes flushes and low level compactions
* Preempts high level compactions with low level ones

 Required changing several core modules made of thousands of LoC

PAIO
 Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/0O scheduling algorithm

31

Tail latency control in LSM-based KVS

RocksDB ~

(
 [nterference between foreground and background t @ Note: By propagating application-level
information to the stage, PAIO can enable

similar control and performance as system-
specific optimizations
SILK P P Y

* |/O scheduler
 Allocates bandwidth for internal operations when client load is low

* Latency spikes occur due to Lo-L1 compactions an(

* Prioritizes flushes and low level compactions

| |
[) D aVtaltaal a alfala) - altaala Aala A a al\V.)) ala¥la
w L/ \ S \J O/ \J A' \J V V \ \J

* Required changing several core modules made of thousands of LoC

PAIO
* Stage provides the I/0 mechanisms for prioritizing and rate limiting background flows

* |ntegrating PAIO in RocksDB only required adding 85 LoC
* Control plane provides a SILK-based I/0O scheduling algorithm

32

Throughput

Mixture workload

50% read 50% write

(KOps/s)

—_— NI

o O

| ROCKSDB | 71 m T 0 T e B A e ooy e e R

,,

Latency
(ms)

1200

Throughput: high variability due to constant flushes
and compactions

n O n O

. System configuration and workload
. * 8 client threads and 8 background threads

. Memory limited to 1GB and I/0 BW to 200MB/s

* Bursty workload with peaks and valleys

--

~

R AR AR AR SRR AR EARE

99th Jatency: high tail latency with peaks with an
average range between 3 and 15 ms

33

Mixture workload

50% read 50% write

£%220r [RocksDB | ¢

%D 8 10 '_',',,',',',,',',',,',',f,',',f,',',f,',',,',',',,',‘ AR Y N[,'
1 W J

—]

, ——
EZ20F [SILK | per i)

%0 8 10 I " I 1 Lo | B
I SR——— ?

—]

1200

Throughput: suffers periodic throughput drops due
to accumulated backlog

99th |atency: low and sustained talil latency

34

AouQje]

—

(8/sdO>D
mdygnoiyJ,

! !

L
O VO W
A i —

(sw)

AouQje]

(sw)
AouQje]

(s/sdO>)

mndygnory .

e

lllll

(s/sdO™)

1200

600
Time (s)

0

600 900 1200
Time (s)

300

mdygnoryy,

>
O
-
0,
afed
O
I
ajd
Q
ajed
=
o
N
O
©
=
Q
N
(O
QO
-
&
O
e
>
<
©
O,
>
-
),
N
0O
o
'«
-
)
L®]
-
©
O
<
all

Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* Local disk bandwidth is still shared, leading to I/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs
* (Cannot leverage from leftover bandwidth

PAIO
» Stage provides the /O mechanisms to dynamically rate limit workflows at each instance

* |ntegrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

* (Control plane provides a proportional sharing algorithm to ensure per-application bandwidth

QoS guarantees
36

Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* |Local disk bandwidth is shared leading to I/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs

 Cannot leverage from leftover bandwidth

PAIO
» Stage provides the I/0 mechanisms to dynamically rate limit workflows at each instance

* |ntegrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

* (Control plane provides a proportional sharing algorithm to ensure per-application bandwidth
QoS guarantees

37

Per-application bandwidth control

ABCI supercomputer
 Jobs can be co-located in the same compute node

 Each job runs with dedicated CPU cores, memory, GPU, and storage quota
* |Local disk bandwidth is shared leading to I/O interference and performance variation

BLKIO
* cgroup’s block I/O controller allows static rate limiting read and write operations

* Adjusting the rate requires stopping and restarting jobs
 (Cannot leverage from leftover bandwidth

PAIO
* Stage provides the I/0 mechanisms to dynamically rate limit workflows at each instance

* |ntegrating PAIO in TensorFlow did not required any code changes (LD_PRELOAD)

* (Control plane provides a proportional sharing algorithm to ensure per-application
bandwidth QoS guarantees

38

Instance |1 {150 MiB/s} jInstance |2 {200 MiB/s}

Instance I3 {300 MiB/s}||Instance |4 {350 MiB/s}

[
-
-
-

I4 248MiB/s

~J
N
S

1,:259MiB/s
250 BRI RTE

MiB/s MiB/s - I1,:256M1B/s
0

Throughput (MiB/s)
N
S
S

0
System configuration and workload
§ * 4 working instances, each running a TensorFlow jOb
. Dedicated compute and memory resources
. » Disk bandwidth limited to 1GiB/s
.« Jobs start at different times

I3 and |4 cannot meet their bandwidth targets during 31 and 34 minutes

|
HENR
H
Instance |1 {150 MiB/s} jInstance |2 {200 MiB/s}

Instance I3 {300 MiB/s}||Instance |4 {350 MiB/s}

/U?] 0O00F oo ------ AT TR AL Y v U Y P M T T SR T — 1000 F— S - , —T T oo-- S
@ 14:248MiB/s | ! :

S 750f - i - 750 -tk @)oo AL SRV

aSOO ------ ' - /M @- 500 F -~ 15:298MiB/s : Bfg--- -
= 1,:259MiB/s : : :

o0 02 : :

WA 421 385 369 | 02 250 BV v I,:199MiB/ 199MiB/s 200MiB/ e
o : 322 Bio : iB/s iB/s iB/s

E MiB/s MiB/s : I,:256MiB/s MiB/s el 4331 e 1\{[%30/5 1\{%]8/ S 2

= VB SMiB/s MiB/s 1,:149MiB/s 149MiB/s 150MiB/s

% 10 20 30 40 50 55 0 40

Instances cannot be dynamically provisioned with available disk bandwidth

|
HENR
H
Instance |1 {150 MiB/s} jInstance |2 {200 MiB/s}

Instance I3 {300 MiB/s}||Instance |4 {350 MiB/s}

~1000F - T TRV SN S A Y S N T T S R T, S —— 1000 F— ST PR - 7 —T e S
@ 1,:248MiB/s : | __________ : :
= PO bl - 750 Q] .
é 500F - - ' : pgMiBEk - 500 - 1,:298MiB/s 5 iB/§-------- T
< 1,:259MiB/s e . . !
BRI 421 385 | 369 1425 250 - 1\14?38/5 1\24%(3)/5 I,:199MiB/s 199MiB/s 200MiB/s
§= MiB/s MiB/s ' I1,:256M1B/s | 150 . . .
= VB /MR /s MiB/s 1,:149MiB/s 149MiB/s 150MiB/s =

0 Sh) 0 10 20 30 40 50 60 95
FlO00F s 0 1 (B) e e Ay A O R A N Ay (5) 1
e PAIO . . .
g 750@ 349MIB/s | T - LT I @ """""
S 500F: g 384MiB/s 1,:299MiB/s 5 IB/S T T
= 296MiB/s
1)) | . _
2 250 . I,:198MiB/s

423MiB/s : . .

=z 0 > 38MiB/s 245MiB/s I,:147MiB/s
= 0 10 20 30 40 50

Time (minutes)

PAIO ensures that policies are met at all times, and whenever leftover

bandwidth is available, PAIO shares it across active instances

Storage data planes for deep learning

Storage tiering (Monarch)

DL framework

* Framework-agnostic storage middleware T TR T TR

* Leverages existing storage tiers of supercomputers o. g* evaio Monarjh — ;

* Accelerates DL training time by up to 28% and 37% in 'Mgéa.-;.;;aaﬁ;;.;.;;" ;'"'s't;;a;,;na;;;;;;r;y'“‘g " Placement Handler
TensorFlow and PyTorch /é*\,ﬁ & 555,

» Decreases the operations submitted to the PFS 5—--"39-f‘f"-”-a-tf'-"-'ﬁy-f-‘}a-'_f’?f_h-_--5_ E{-_--_-_--E-“_--_---_¥-_-_-eﬁ_gﬁ_-._-_.._5_ ppfy/dpm

T4 write——
O T reade—— ¢9 I

. .
Parallel data prefetching (Prisma)

e Data plane for prefetching training data samples © 5—; DL Framework J

A T A
Consumer 1 Consumer j

e Significantly outperforms baseline PyTorch and T | © pramascctnenane P sadioname_ 1)

filename 1

TensorFlow configurations faname?

filename _m

Autotuner e ETETTT EETErr—

algorithm: omoe-e- Bt IR Producer (
set_n_threads();

* Achieves similar performance as carefully engineered (S

. . . . @ set_buffer_size(); __ _F_’(qc_:l_u_qg(_k_’
/O optimizations in TensorFlow QG
@ Producer 1 Producer k
pread(ﬁlelvame_v pread(ﬁleiame_n)
[7] “Accelerating Deep Learning Training Through Transparent Storage Tiering”. Dantas et al. ACM/IEEE CCGrid 2022. F Filo Systom ﬁ
[8] “Monarch: Hierarchical Storage Management for Deep Learning Frameworks”. Dantas et al. IEEE Cluster@Rex-10 2021.

[9] “The Case for Storage Optimization Decoupling in Deep Learning Frameworks”. Macedo et al. IEEE Cluster@Rex-I0O 2021.

Summary and takeaways

* PAIO, a user-level framework to build custom-made storage data plane stages

» Combines ideas from Software-Defined Storage and context propagation

* Decouples system-specific optimizations to dedicated |/O layers

* User-level data planes enable similar control and I/O performance as system-
specific optimizations

* Can be applied over (a lot of) different storage scenarios ...

43

Q&A

Ricardo Macedo

D4 ricardo.g.macedo@inesctec.pt
() qithub.com/dsrhaslab

) dsr-haslab.qithub.io

mailto:ricardo.g.macedo@inesctec.pt
https://github.com/dsrhaslab/
http://dsr-haslab.github.io

