
Received 11 September 2023, accepted 25 September 2023, date of publication 4 October 2023,
date of current version 11 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3322104

Toward a Practical and Timely Diagnosis
of Application’s I/O Behavior
TÂNIA ESTEVES , RICARDO MACEDO , RUI OLIVEIRA , AND JOÃO PAULO
INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal
Department of Informatics, University of Minho, 4710-057 Braga, Portugal

Corresponding author: Tânia Esteves (tania.c.araujo@inesctec.pt)

This work was supported by FCT - Portuguese Foundation for Science and Technology through the Ph.D. grant DFA/BD/5881/2020 and
realized within the scope of the project LA/P/0063/2020.

ABSTRACT We present DIO, a generic tool for observing inefficient and erroneous I/O interactions between
applications and in-kernel storage backends that lead to performance, dependability, and correctness issues.
DIO eases the analysis and enables near real-time visualization of complex I/O patterns for data-intensive
applications generating millions of storage requests. This is achieved by non-intrusively intercepting system
calls, enriching collected data with relevant context, and providing timely analysis and visualization for
traced events. We demonstrate its usefulness by analyzing four production-level applications. Results show
that DIO enables diagnosing inefficient I/O patterns that lead to poor application performance, unexpected
and redundant I/O calls caused by high-level libraries, resource contention in multithreaded I/O that leads to
high tail latency, and erroneous file accesses that cause data loss. Moreover, through a detailed evaluation,
we show that, when comparing DIO’s inline diagnosis pipeline with a similar state-of-the-art solution, our
system captures up to 28xmore events while keeping tracing performance overhead between 14% and 51%.

INDEX TERMS Storage systems, I/O diagnosis, tracing, analysis.

I. INTRODUCTION
The performance, correctness, and dependability of data-
intensive applications (e.g., databases, key-value stores,
analytical engines, machine learning frameworks) is highly
influenced by the way these interact with in-kernel
POSIX storage backends, such as file systems and block
devices [1], [2].1

Due to human error, lack of detailed knowledge on
how to efficiently and correctly access the storage backend
or usage of high-level libraries that obfuscate the actual
POSIX requests being made, developers often implement
applications that exhibit: i) costly access patterns, such as
small-sized I/O requests or random accesses; ii) redundant
operations, such as unnecessarily re-opening and closing a
given file; iii) I/O contention caused by having concurrent

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .
1By ‘‘in-kernel storage backend’’, we refer to storage solutions that

expose a kernel-based POSIX interface for user-space applications to persist
and access data.

requests accessing shared storage resources; and iv) erro-
neous usage of I/O calls, for example, by accessing wrong file
offsets. These patterns lead to inefficient or incorrect storage
I/O accesses, which not only compromise the usefulness
of optimizations implemented within each storage backend
(e.g., caching, scheduling), but can ultimately degrade end-
to-end performance, negatively impact availability, and even
cause data loss for applications.

The sheer amount of storage operations generated by
these applications, ranging from hundreds to thousands of
operations per second, makes their analysis a complex and
time-consuming task when done manually. Thus, diagnosis
tools that can help users and developers profilemore precisely
the I/O interaction between applications and corresponding
storage backends are crucial for debugging errors, finding
performance and dependability issues, and identifying poten-
tial optimizations for applications [3], [4], [5].

The main insight of this paper is that, by combining system
call (or syscall for short) tracing with a customizable analysis
pipeline, one can achieve non-intrusive and comprehensive

110184

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9358-1008
https://orcid.org/0000-0003-4036-0126
https://orcid.org/0000-0003-3408-7346
https://orcid.org/0000-0001-9752-2822
https://orcid.org/0000-0001-9027-298X

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

I/O diagnosis for applications using in-kernel POSIX storage
backends (e.g., file system, Linux block device).2 Doing so
requires overcoming the following limitations.
(A) Intrusiveness: The collection of information about I/O

requests is often done through source code instrumen-
tation [7], [8], [9], [10]. This approach is not easily
applicable across different applications as it requires
users to manually analyze and instrument distinct
and potentially large codebases (e.g., RocksDB has
approximately 440K lines of codewritten in six different
programming languages).

(B) Practicality: I/O requests can be intercepted non-
intrusively with kernel-level tracing technologies.
However, the performance penalty imposed on the appli-
cation by widely-used solutions, such as Strace [11],
can make this choice unpractical for data-intensive
workloads. Namely, it significantly increases the time
for tracing requests and, due to the performance
slowdown, can hide subtle concurrency issues, such as
I/O contention or starvation [4], [12]. This challenge
motivated the emergence of technologies such as
eBPF [13] and LTTng [14], which follow a non-blocking
tracing strategy that reduces performance overhead at
the cost of potentially discarding I/O events that cannot
be processed in a timely fashion.

(C) Lack of analysis pipeline: While efficient I/O tracing is
an important step for profiling applications, by itself it is
not sufficient, given the large number of collected events
(easily reaching tens of millions) that must be parsed,
correlated, and visually represented to provide insightful
information (e.g., showcase contention in multithreaded
I/O). Several solutions only cover the tracing collection
step, delegating these other time-consuming tasks to
users [11], [15], [16], [17].

(D) Flexibility: Solutions offering a complete pipeline for
application diagnosis are designed for rigid analysis
scenarios, such as detecting unreproducible builds [18],
observing file offset access patterns [5], or identifying
security issues [19], [20]. Thus, for multipurpose
profiling tasks, one must combine several of these
tools and repeat multiple times the tracing, analysis,
and visualization of the same application. Ideally,
diagnosis tools should provide the flexibility to narrow
or broaden both tracing and analysis scopes based on
user goals. This would enable exploring a wider range of
performance, correctness, and dependability issues that
applications may exhibit, such as those identified at §IV.

This paper proposes DIO, a generic tool for observing
and diagnosing applications’ storage I/O. It addresses the
aforementioned challenges with the following contributions:

2This is an expanded version of the work published in [6]. We improved
our earlier publication by further detailing DIO’s design to emphasize
the tool’s relevance, introducing two new use cases with production-
level applications that demonstrate the tool’s readiness and relevance, and
providing new experiments that evaluate and compare DIO with related
solutions.

A. NON-INTRUSIVE, COMPREHENSIVE AND
FLEXIBLE TRACING
DIO offers a new eBPF-based tracer that intercepts syscalls
issued by applications without requiring changes to their
source code or instrumentation of binaries. By operating
at kernel-space, DIO is able to intercept syscalls submitted
by any application that makes POSIX requests to the
storage backend. The tracer supports 42 storage-related
syscalls and records a comprehensive set of information
for each operation, including its type, arguments, return
value, timestamp, ProcessID (PID), and ThreadID (TID).
By offering a flexible design, DIO allows collecting only
events of interest, filtering them (at kernel-level) by syscall
type, PID, TID, or file paths. This enables narrowing the
tracing scope according to users’ requirements, reducing
the size of the stored trace, and minimizing performance
overhead over the targeted application.

B. ENRICHED ANALYSIS
DIO enriches data gathered for each syscall with additional
context available at the kernel (e.g., process name, file type,
offset), which can be used to improve the correlation and
analysis of requests (e.g., associating different syscalls to
a file path, differentiating operations over regular files or
directories). These features enable a richer and wider analysis
of incorrect or inefficient I/O patterns.

C. ASYNCHRONOUS EVENT HANDLING
Only syscall interception is done synchronously, while
traced events are collected and processed in user-space
asynchronously. This avoids adding extra latency in the
critical path of I/O requests and enables practical analysis of
data-intensive storage workloads.

D. NEAR REAL-TIME PIPELINE
DIO offers a practical and customizable pipeline so that
users can create their own queries, correlation algorithms, and
dashboards to analyze collected data. The pipeline follows an
inline approach, meaning that traced events are automatically
parsed and forwarded to the analysis and visualization
components as soon as they are collected in user-space,
without requiring manual user intervention.

Contrarily to state-of-the-art and widely used syscall
tracers, like Strace [11] and Sysdig [15], DIO collects more
comprehensive information about I/O requests (e.g., DIO is
the only tool capturing the file offset for read and write
syscalls), and provides an integrated analysis pipeline which
allows users to query and visualize captured data in a practical
and near real-time fashion.

DIO is implemented as an open-source prototype using
eBPF [13], Elasticsearch [21], and Kibana [22], and validated
with production-level systems. Results show that DIO
enables the diagnosis of i) inefficient use of syscalls that
lead to poor storage performance in Redis, ii) unexpected file
access patterns caused by the usage of high-level libraries that

VOLUME 11, 2023 110185

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 1. Log file access pattern, depicting syscalls issued within second and microsecond resolutions, for Redis’s version including inefficient I/O
patterns ((a) and (c)) and for the fixed version ((b) and (d)).

lead to redundant I/O calls in Elasticsearch, iii) erroneous file
accesses that cause data loss in Fluent Bit, and iv) resource
contention in multi-threaded I/O that leads to high tail latency
for user workloads in RocksDB.

Moreover, we conduct a thorough experimental evaluation
that highlights the different trade-offs in terms of perfor-
mance overhead, resource usage, and tracing accuracy when
using different tracing modes and configurations provided by
DIO while validating our solution against two state-of-the-
art syscall-based tracers: Strace [11] and Sysdig [15]. Results
show that when compared with an inline diagnosis pipeline
using Sysdig, DIO provides timely analysis for users and
improves the amount of captured events by up to 28x while
keeping performance overhead between 14% and 51%.

All artifacts discussed in this paper, including DIO,
workloads, scripts, and the corresponding analysis and visu-
alization outputs, are publicly available at https://github.com/
dsrhaslab/dio.

The rest of the paper is structured as follows. §II motivates
the need for a tool like DIO, and §III describes its design
and implementation details. §IV and §V evaluate DIO
qualitatively (with three more use cases) and quantitatively
(under intensive I/Oworkloads). §VI and §VII discuss related
work and conclude the paper.

II. MOTIVATION
To showcase the benefits that integrated syscall tracing,
analysis, and visualization bring towards validating inef-
ficient I/O behavior from applications, let us consider a
previously known issue identified in the Redis in-memory
data store [23]. Specifically, the server log file is repeatedly
opened and closed for every written line, which adds extra
latency for log operations and can potentially slow down
Redis performance.3

3Logging improvements issue from Redis’ GitHub repository:
https://github.com/redis/redis/pull/10531

To identify this behavior, users could run a workload
on top of Redis and trace the syscalls submitted to kernel.
In this example, we used redis-benchmark to generate 5M
requests to the database, which yield >200M syscalls.4

Inspecting these events without proper filtering, correlation,
and visualization mechanisms is a non-trivial and time-
consuming task.

In this paper, we argue that an analysis pipeline integrating
the previous mechanisms would greatly simplify users’ work.
In particular, for this specific use case, by intercepting only
the syscalls submitted to the file system, while discarding
Redis’s read and write operations for network sockets,
one would just need to trace ≈600K storage-related syscalls
(i.e., ≈0.3% of the original tracing sample).

Then, through correlation, users could further filter these
storage events and explore only the syscalls being directed
into the log file reported at the issue. Finally, through
visualization, it would be possible to observe the pattern
shown in Figs. 1a and 1c. The former shows a set of syscalls
being made repeatedly over the log file. The latter depicts a
sample of the first 350µs within a millisecond, showing the
exact order and duration of the requests for one of these sets
(i.e.,openat→ lseek→ fstat→ write→close).
By interacting with the latter visualization (i.e., visually
exploring the syscalls’ arguments), it would also be possible
to observe that those syscalls are accessing consecutive file
offsets, suggesting a sequential file access pattern.

As suggested in the pull request for the issue, this
inefficient I/O pattern can be fixed by: i) keeping the log’s file
descriptor opened while the file is being used, and ii) using
writev to write log lines more efficiently. As depicted in
Figs. 1b and 1d, by using the same analysis pipeline, users
can also validate the suggested fix, where redundant open
and close operations are avoided, along with the need for

4https://redis.io/docs/management/optimization/benchmarks/

110186 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 2. DIO’s design and flow of events.

using lseek before every write operation. Also, writev is
now used to write log lines instead of write.
The aforementioned visualizations are real outputs of

using DIO for this use case (available at https://dio-
tool.netlify.app/use-cases/redis). Next, we further detail the
proposed solution, while in §IV, we show that it can be used
to discover other types of undesired I/O behaviors, observe
erroneous file access patterns that cause data loss, and assist
with the root cause analysis of applications exhibiting high
tail latencies.

III. THE DIO TOOL
DIO is a generic tool for observing and diagnosing the
I/O interactions between applications and in-kernel POSIX
storage backends. Its design is built over the following core
principles, which overcome the challenges discussed in §I.
Transparency and reduced overhead: DIO relies on the

Linux kernel tracing infrastructure, namely tracepoints and
kernel probes, to intercept applications’ syscalls without
requiring any modification to their source code or underlying
libraries. Moreover, DIO uses tracing technologies that allow
minimizing the extra processing done in the critical path of
I/O requests to reduce the performance overhead imposed
over targeted applications.
Practical and timely analysis: Traced data is asyn-

chronously sent to a remote analysis pipeline, avoiding
adding extra latency to the critical I/O path of applications
while enabling users to visualize collected data in near real-
time.
Post-mortem analysis:DIO allows storing different tracing

executions from the same or different applications and
posteriorly analyzing and comparing them.
Flexible and comprehensive tracing: DIO intercepts

different types of storage-related syscalls, covering data
(e.g., write, read), metadata (e.g., openat, stat),
extended attributes (e.g., getxattr, setxattr), and
directory management (e.g., mknod, mknodat) requests.
Users can choose to capture only the relevant ones for their
analysis goals and further filter them based on targeted PIDs,
TIDs, and file paths. Moreover, two tracing modes (§III-C)

are provided that allow users to configure the amount of
detail collected for each I/O syscall. These tracing modes and
filters allow minimizing the performance impact and storage
overhead (i.e., the size of traced data) imposed by DIO.
Enriching syscall analysis: DIO enriches the information

provided directly by each syscall (i.e., type, arguments, return
value) with additional context from the kernel, such as the
name of the process that originated the request, the type of
the file being accessed by it, and its offset.
Data querying and correlation:With DIO, users can query

traced data, apply filters to analyze specific information
(e.g., syscalls executed by a specific TID), and correlate
different types of data (e.g., associate file descriptors with file
paths).
Customized visualization: DIO comprises a visualization

component that provides mechanisms for simplifying data
exploration and building customized visualizations.

A. SYSTEM OVERVIEW
DIO consists of three main components, namely the Tracer,
the Backend, and the Visualizer, as depicted in Fig. 2. DIO’s
analysis pipeline includes the latter two components.

The Tracer intercepts syscalls from applications, filters
them according to the user’s configurations (e.g., by TID),
and packs their information into events that are asyn-
chronously sent to the Backend (➍). The latter persists and
indexes events (➎) and allows users to query and summarize
(e.g., aggregating) stored information (➏). Meanwhile, the
Visualizer provides near real-time visualization of the traced
events by directly querying the Backend (➐). Users rely on
the Visualizer to ease the process of data exploration and
analysis by selecting specific types of data (e.g., syscall types,
arguments) to build different and customized representations.

B. TRACER
The Tracer intercepts syscalls done by applications in a
non-intrusive way. To that end, it relies on the eBPF
technology [13], which allows instrumenting the Linux
kernel by executing small programs (i.e., eBPF programs)
whenever a given point of interest (e.g., tracepoint, kernel
probe) is called, without requiring the costly syscall context
switching from user-space to kernel-space as in other state-
of-the-art tracing mechanisms (e.g., the use of ptrace by
Strace) [4], [12].

In detail, DIO’s Tracer comprises a set of eBPF programs
that, at the initialization phase (➊), are automatically and
transparently attached to syscall tracepoints. Whenever these
tracepoints are reached (i.e., a syscall is invoked), the eBPF
program gathers the desired information about the request,
including entry (e.g., arguments) and exit (e.g., return value)
related data, and places it in a per-CPU ring buffer (➋),
which is a contiguous memory area used for exchanging
data between kernel (producers) and user-space (consumers)
processes. At user-space, the Tracer asynchronously fetches
information from the ring buffer (➌), parses it into events
(specified in JSON objects), and sends these to the Backend.

VOLUME 11, 2023 110187

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

TABLE 1. Syscalls supported by DIO.

To minimize both network and performance overhead, the
Tracer groups several events into buckets that are sent and
indexed in batches at the Backend.

1) SUPPORTED SYSCALLS AND FILTERS
Table 1 depicts the syscalls supported by DIO. Since
instrumenting syscalls can introduce extra processing in the
critical path of I/O requests, DIO allows users to filter
requests by:
(a) type of syscall - activates only the tracepoints for the

provided syscall types.
(b) process name - captures only syscalls issued by a process

with the provided name.
(c) process or thread ID(s) - captures only syscalls issued

by a given list of process or thread IDs.
(d) file or directory path(s) - captures only syscalls targeting

one of the provided file or directory paths.
The flexibility offered by these filters allows users to better

configure the Tracer according to their goals and balance
the tracing accuracy with the storage and performance
overheads. Namely, by specifying the targeted syscall types
(a), the Tracer avoids activating unnecessary tracepoints, thus
reducing the amount of I/O requests with extra processing in
their critical path.Moreover, by applying the remaining filters
(namely, (b), (c), and (d)) in kernel-space, DIO reduces the
amount of information to be sent and processed in user-space.

C. COLLECTED INFORMATION
For each intercepted syscall, DIO collects information related
to the:
• syscall - type, arguments, and return value.
• process - PID, TID, and process name.
• time - entry and exit timestamps.
Since the amount of captured information can influence

the overhead imposed on the targeted application, DIO offers

different tracing modes (raw and detailed) that balance the
detail of information capturedwith the extra processing added
to the critical path of I/O requests.
Raw: The less detailed mode (referred to as raw)

captures the information above without pre-processing it.
This means that for arguments referring to memory regions
(e.g., char *pathname in stat syscall, or char *
name in getxattr syscall), only their hexadecimal value
is saved (e.g., "name":"0×55555556feab"
). Also, for numerical arguments (e.g., int flags in
openat syscall, or int fd in write syscall) no transla-
tion is done and their values are saved in their original form
(e.g., "flags":1089).
By saving information in its raw format, DIO reduces

the extra processing in the critical path of I/O requests, the
amount of data transferred to user-space, and the information
that must be analyzed posteriorly. As shown n §IV-C, there
are scenarios where the information provided by this mode is
sufficient for diagnosing I/O issues.
Detailed: For a more in-depth analysis, DIO offers a

detailed mode, which provides comprehensive information
about the requests by pre-processing some arguments before
saving the events (§III-C1), enriching the traced information
with context from the kernel (§III-C2) and translating file
descriptors to their corresponding file paths (§III-C3).

1) DATA PRE-PROCESSING
Instead of keeping the collected information in its raw
format, the detailed mode transforms values into a human-
readable form (e.g., "flags": "O_WRONLY|O_CREAT
|O_APPEND"), simplifying the analysis process done
by users. Furthermore, this mode captures the actual
memory content for pointer arguments instead of sav-
ing their hexadecimal values (e.g., "name": "system.
posix_acl_access").

For buffers being handled by data-related syscalls
(e.g., void *buf in read syscall), the detailed mode
provides the option to compute a hash sum of their
content (e.g., "buf": "This is the first log
line"→ "signature": 114a83d4). This way, DIO
compacts the amount of information that reaches the analysis
pipeline, minimizing the storage overheadwhile still allowing
the observation of syscalls handling the same data content (as
shown in §IV-B). The hash sum can either be computed in
user-space, which requires transferring the buffers’ content
from kernel, or in the kernel, which reduces the amount of
information sent to user-space but adds extra processing to
the critical path of I/O requests.

2) ENRICHED INFORMATION
While the aforementioned information already provides valu-
able insights about applications’ I/O behavior, correlating
this data with other types of information further enriches
and eases the analysis made by users (as discussed in §IV).
Therefore, the detailed mode leverages eBPF’s access to

110188 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 3. Kernel structures used by DIO. d_name, i_mode, and f_pos are
used to obtain the file path, offset, and type. i_ino and s_dev are used to
create a unique file tag.

kernel structures (as depicted in Fig. 3) and complements
traced information with:

• The file path being accessed by syscalls. Since
many syscalls access files through a file descriptor
(e.g., read, close, fgetxattr), obtaining the cor-
responding file path provides more specific information
about the file being handled.

• The file type targeted by syscalls. This additional
information allows differentiating accesses to regular
files, directories, sockets, block/char devices, pipes,
symbolic links, and others.

• The file offset being accessed by data-related syscalls.
Information about offsets allows observing file access
patterns (e.g., sequential/random accesses), even for
syscalls that do not provide the file offset as an argument
(e.g., read).

3) FILE DESCRIPTOR TRANSLATION
Associating syscalls with their corresponding file paths
is fundamental to enabling detailed tracing information.
However, this is not a trivial task.

The typical approach to address this challenge is to
correlate the file descriptor with the file path argument of the
previous open call that initialized it (i.e., the open syscall
that originated the file descriptor). However, this approach is
not accurate as there are other mechanisms to obtain a given
file descriptor (e.g., through the creation of new processes
via fork, duplication of file descriptors through dup, dup2,
or fcntl).

State-of-the-art solutions using eBPF [4] access kernel
structures to find the file path corresponding to a specific
file descriptor. However, transferring file paths from kernel to
user-space for each event accessing a file induces significant
tracing overhead and leads to potential loss of traced
information.

DIO introduces a different approach by creating a custom
event (EventPath) that contains information about a specific
file (i.e., file path, file type) and by sending it only once
to user-space. Each EventPath is labeled with a unique file

tag, which is then associated with any syscall accessing that
specific file.

Algorithm III.1 EventPath and File Tag Generation
Input:

fd : file descriptor
curTimestamp: current timestamp
openedInodes: list of currently opened inodes
curEvent: current event structure

1 Function checkInode(fd, curTimestamp)
2 inodeNo← getInodeNo(fd)
3 deviceNo← getDeviceNo(fd)
4 fileTag← createFileTag(inodeNo, deviceNo)
5 if fileTagnot inopenedInodes then
6 filePath← getFilePath(fd)
7 submitNewEventPath(filePath, fileTag)
8 openedInodes.append(fileTag, curTimestamp)
9 curEvent .add(fileTag, curTimestamp)

10 else
11 timestamp← getTimestamp(fileTag)
12 curEvent .add(fileTag, timestamp)

Alg. III.1 further details how DIO creates both the file
tag and EventPath event. First, whenever an intercepted
syscall accesses a file through a file descriptor, DIO goes
through Linux kernel structures (as depicted in Fig. 3)
and obtains information about the file’s inode number
and the file system’s device number (L2-L3). DIO relies
on the assumption that every inode has a unique number
inside the same file system. Thus, by combining the inode
number with the device number, DIO can create a unique file
tag (L4).

After generating the file tag, DIO verifies if it is included
in the list of opened inodes (i.e., inodes accessed during the
tracing execution). If the list does not contain the current file
tag, DIO calculates the file path for the current file descriptor
(L6) and sends to user-space a new EventPath, containing the
file path, type, and tag (L7). The file tag is then added to
the list of opened inodes (L8) and associated with the current
event being handled (L9). If the file tag already exists in the
list of opened inodes, it only needs to associate the file tag
to the current event being handled (L11-L12). Finally, when
an inode is destroyed, the corresponding file tag is removed
from the list of opened inodes.

Since inodes are recycled over time, DIO distinguishes
reused inode by assigning to each file tag the timestamp of
the first captured access to that inode, and in user-space,
each event will have associated a tag composed of the device
number, inode number, and timestamp (e.g., "file_tag":
"7340032|12|6707719730779287").
This approach minimizes the amount of redundant data

transferred between kernel and user-space and, consequently,
the storage and performance overheads. Moreover, even if an
EventPath is lost, which prevents the association of the file

VOLUME 11, 2023 110189

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

path to the event, a file access pattern analysis would still be
possible by using the file tag. §III-D further describes how
each event is correlated to the corresponding file path through
the generated file tags and EventPaths.

D. BACKEND
The Backend allows persisting, searching, and analyzing data
from traced events. It uses the Elasticsearch [21] distributed
engine for storing and processing large volumes of data. Its
flexible document-oriented schema allows indexing events as
documents, even if these have potentially different structures
(e.g., distinct fields corresponding to syscall arguments).
Moreover, it provides an interface for searching, querying,
and updating documents, which allows users to develop and
integrate customized data correlation algorithms.
File path correlation algorithm: We have implemented a

custom algorithm to enable the correlation of syscalls with
specific accessed file paths. Using Elasticsearch’s data query-
ing and updating features, the file tags (i.e., unique identifiers
generated by the Tracer component) associated with syscalls
are translated into the actual file paths being accessed at the
storage backend (e.g., /tmp/app/log.txt).

Algorithm III.2 File Path Correlation Algorithm
Input:

sysEvents: list of events with a file tag
evtPaths: list of file paths

1 Function correlateFP(sysEvents, evtPaths)
2 for sys← sysEvents do
3 for path← evtPaths do
4 if sys.FileTag = path.FileTag then
5 sys.FilePath← path.FilePath
6 sys.FileType← path.FileType

Alg. III.2 shows the file path correlation performed by
the Backend. The algorithm receives two lists as arguments:
i) the syscalls events (sysEvents), and ii) all EventPath events
(evtPaths) generated during the Tracer execution. By relying
on the unique file tags, the algorithm matches each syscall
event with the corresponding EventPath (L2-L4), updating
the former with the file path and type information (L5-L6).

E. VISUALIZER
The Visualizer provides an automated approach towards
exploring (e.g., query and filter events) and visually depicting
(e.g., through tables, histograms, time-series graphs) the
analysis findings. This component uses Kibana [22], the
data visualization dashboard software for Elasticsearch,
which is often used for log and time-series analytics and
application monitoring. Kibana also allows building custom
visualizations, thus being aligned with the design principles
of DIO.
Nanosecond visualization: The minimum time unit sup-

ported by Kibana for visualization is restricted to the

millisecond. This prevents users from observing the order
and time spread for requests occurring in sub-millisecond
time windows, which occur frequently when using modern
storage and network hardware (e.g., NVMe, persistent
memory, RDMA). Namely, data-intensive applications gen-
erate hundreds to thousands of I/O operations per second.
Consequently, many of these operations can occur within the
same millisecond. As shown in §II and IV-A, observing the
order and time spreading of requests at a smaller time interval
(i.e., microsecond or nanosecond) is important to diagnose
applications’ I/O by allowing, for instance, to visualize
duplicate syscalls or to understand the sequence and duration
of syscalls made in such a short time window. Therefore,
we designed a new representation that depicts I/O events
order and time spacing at the nanosecond time unit resolution
(Figs. 1c, 1d and 4b). It is fully integrated with Kibana’s
dashboards and automatically queries the Backend to collect
the required data.

F. IMPLEMENTATION
The Tracer is implemented in ≈8K LoC, divided into two
parts: i) the eBPF programs that run in kernel-space and ii) the
user-space code including the remaining tracer’s logic.

The eBPF programs are implemented in C and are
responsible for collecting and filtering relevant storage
I/O events. The user-space code is implemented in Go
(v17.4) and is responsible for enabling the desired I/O
tracepoints (attaching eBPF programs), specifying the user-
defined filters applied at each tracepoint, gathering and
parsing the information collected in the kernel, and sending
it to the Backend. This is done using the BPF Compiler
Collection (BCC) framework through the gobpf lib (v0.2.0),
which provides an abstraction for creating, attaching, and
interacting with eBPF programs. For communication with
Elasticsearch, we use the go-elasticsearch (v7.13.1) module,
taking advantage of the bulk indexing API for sending
multiple events simultaneously.

The Backend and Visualizer components use Elasticsearch
(v8.5.2) and Kibana (v8.5.2), respectively. The file path
correlation algorithm can be automatically executed by the
tracer or on-demand by users. The nanosecond representation
is implemented with the Vega-lite [24] (v4) visualization
grammar and provided along with DIO’s predefined dash-
boards.

G. CONFIGURATION AND USAGE
The installation and configuration of DIO are performed in
two phases: i) the setup and initialization of the analysis
pipeline and ii) the configuration and execution of the tracer.
Analysis pipeline: Although all DIO’s components can be

deployed in the same server, to avoid negatively impacting
the performance of the targeted application (e.g., additional
resource consumption), the analysis pipeline can be installed
on separate servers (Fig. 2). Further, as the Tracer component
labels each tracing execution with a unique session name, one

110190 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

can deploy DIO as a service, setting up the analysis pipeline
on dedicated servers and allowing multiple executions of
DIO’s Tracer on different machines and by distinct users.

The deployment and configuration of the analysis pipeline
comprise its software installation (i.e., Elasticsearch and
Kibana) and importing its predefined dashboards. As soon as
tracing data arrives at the pipeline, users can access Kibana’s
web page and visualize DIO’s dashboards, apply analysis
filters, and edit or create new visualizations and dashboards.
Tracer: Once the analysis pipeline is deployed, users can

use DIO’s tracer to collect information. The tracer executes
along with the targeted application, stopping once its main
and child processes finish or upon explicit users’ instruction.5

By default, DIO’s Tracer enables tracepoints for the full
set of supported syscalls. However, users can specify a list
of syscalls to observe, and the Tracer will only activate
tracepoints for those operations. Also, users may specify a
list of files/directories to observe, instructing the Tracer only
to record events that target them.

Moreover, users can choose between raw or detailed
tracing modes and further configure the latter to deactivate
the collection of arguments that require transferring large
amounts of data to user-space. Namely, data buffers’ content
and file paths obtained from syscall arguments may only
be relevant to some specific cases and, therefore, can be
collected/ignored according to the analysis goals. As we
show in the next section, data buffers are irrelevant for use
cases §II, §IV-A and §IV-C, while the file paths obtained from
syscall such as lstat or unlink are only relevant for use
cases §IV-A and §IV-B.

All these configurations, along with the analysis pipeline’s
parameters (e.g., Elasticsearch URL), can be set through a
configuration file.

IV. USE CASES
Our evaluation showcases how DIO eases the process of
observing and validating known issues or exploring unknown
applications and finding potential problems. To this end,
besides the Redis use case discussed at §II, we analyzed
three additional production-level applications: Elasticsearch,
RocksDB, and Fluent Bit. Results show that DIO :
• provides valuable information about applications’ I/O
requests that can be used to uncover or confirm
inefficient (§II) or unexpected (§IV-A) I/O patterns;

• is a practical tool for validating the root causes of
correctness (§IV-B) and performance (§IV-C) issues,
without instrumenting large codebases.

Except for Fig. 7, all the remaining figures in this section
were generated with DIO (with minimal modifications for
readability). The full set of DIO’s visual representations is
available at https://dio-tool.netlify.app.

5Multiple instances of DIO’s tracer can be deployed to diagnose
distributed applications across the servers where their components are
running. Each instance of DIO’s tracer will generate an independent tracing
index at the same Backend (containing information about the targeted host),
allowing for later analysis and correlation of each tracing execution.

Experimental Setup: Our testbed comprises three servers
running Ubuntu 20.04 LTS with kernel 5.4.0. The server
running the application and DIO’s tracer is equipped with
a 4-core Intel Core i3-7100, 16 GiB of memory, a 250 GiB
NVMe SSD (used for storing tracing data), and a 512 GiB
SATA SSD (used for hosting the datasets). DIO’s Backend
and Visualization components run on two separate servers,
both equippedwith a 6-core Intel i5-9500, 16GiB ofmemory,
and a 250 GiB NVMe SSD.
Workloads: Both benchmarks and custom workloads were

selected to reproduce specific but realistic interactions
between the targeted applications and underlying storage
backends. As shown next, these workloads validate that DIO
can be used to explore the I/O patterns of real applications and
identify the root cause of real known issues. Further details
of the workloads and benchmark configurations are provided
along with each use case.

A. TOP-DOWN EXPLORATION AND DIAGNOSIS OF
APPLICATIONS’ I/O
Next, we show how DIO can be used to explore and obtain
additional insight into the I/O behavior of applications and
then, by following a top-down approach, how one can use
our solution to diagnose inefficient file access patterns.

We chose Elasticsearch [21] (v8.3.0), a distributed search
and analytics engine, as the targeted application.6 Due to
the use case’s exploratory nature, DIO was configured to
capture all supported syscalls. We used the Rally benchmark
with the default workload (geonames) to generate load for
Elasticsearch.7 This workload indexes≈11M documents and
executes different queries (e.g., filter, sort).

Under this workload, and with the help of the information
collected and organized by DIO, we observed that Elas-
ticsearch generates >1M storage-related syscalls, 99.7% of
them targeting regular files and the remaining ones targeting
directories. Elasticsearch uses mainly data-related operations
(88%), most of them being write (71%), pread64 (7%)
and read (5%). Further, it spawns a total of 42 processes
and 118 threads while accessing almost 4000 files.

As depicted in Fig. 4a, some files exhibit a constant
access pattern, even in the absence of client requests.
Namely, every 30 seconds, Elasticsearch submits 2 syscalls
to the node.lock file (line), and every 2 minutes,
9 syscalls to .es_temp_file (line). For the latter, DIO’s
nanosecond visualization (Fig. 4b) uncovered an unexpected
duplication ofopenat () andclose () syscalls. Listing 1
shows the syscalls, along with the corresponding arguments
and return values, observable with DIO. Listing 2 shows
Elasticsearch’s Java source code responsible for accessing
the .es_temp_file. The first openat is generated by
the Files.newOutputStreammethod (➊), which opens
an output stream used for writing data to the file (➋).

6Note that in this section, Elasticsearch is used as the targeted
application and should not be confusedwith the one used to implement DIO’s
Backend.

7https://esrally.readthedocs.io/en/stable/install.html

VOLUME 11, 2023 110191

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 4. Elasticsearch’s file access pattern.

LISTING 1. System calls observable with DIO.

An IOUtils.fsync method is then invoked to flush dirty
pages to disk (➌). However, rather than using the already
opened file descriptor, created from the first openat call,
it internally reopens and closes the file again. Finally, upon
the file’s removal request (➍), three syscalls are issued:
a close corresponding to the first openat, a lstat,
and an unlink. The information provided by DIO is
relevant for identifying the file where this pattern happens
(.es_temp_file) and, therefore, reducing the search

LISTING 2. Elasticsearch source code.

space through the application’s source code from>2.5MLoC
to a single Java class with 195 LoC.8

8https://github.com/elastic/elasticsearch/blob/91413fbd685ba022648ab
f2e8a0e291665a15a1b/server/src/main/java/org/elasticsearch/monitor/fs/
FsHealthService.java#L130

110192 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 5. Fluent bit erroneous access pattern leading to data loss.

This behavior shows that applications’ methods can be
translated into multiple syscalls by the high-level libraries
these are using. For I/O-intensive files, this duplication may
lead to performance degradation and I/O contention at the
storage backend [25].

This use case shows two important features of DIO. First,
how it aids in exploring I/O interactions between applications
and storage backends. Second, how it can be used to find
unexpected I/O patterns being issued by applications and help
users narrow the portion of source code that must be inspected
to fix such patterns.

B. IDENTIFYING ERRONEOUS ACTIONS THAT LEAD
TO DATA LOSS
DIO can assist developers and users in diagnosing the
correctness of their applications. We demonstrate this by
showing erroneous I/O access patterns that result in data loss.

For this use case, we consider Fluent Bit (v1.4.0),
a high-performance logging and metrics processor and
forwarder [26]. Existing issues report that data is lost when
using the tail input plugin, which is used to fetch new
content being added to log files.9,10 Thus, we implemented a

9https://github.com/fluent/fluent-bit/issues/1875
10https://github.com/fluent/fluent-bit/issues/4895

client program that simulates the generation of log files to be
processed by Fluent Bit and mimics the I/O behavior reported
in Issue #1875.9 DIO was used to simultaneously trace and
analyze the client program and Fluent Bit by filtering the
syscalls belonging to these applications’ processes.

Fig. 5a shows a visualization generated by DIO represent-
ing the accessed offsets for the app.log file for both client
(app) and Fluent Bit (fluent-bit) applications. This visual
representation shows that: i) two files are being accessed
(different file tags); ii) the first file is accessed by both app
and fluent-bit applications from offset 0 to offset 26; and
iii) app accesses the second file from offset 0 to offset 16,
but fluent-bit only accesses the offset 26. Complementing this
informationwith the one provided by the tabular visualization
of Fig. 1c (also generated byDIO), one can further understand
these file accesses. The app program starts by creating the
app.log file, writing 26 bytes starting from offset 0, and
closing the file (➊). Then, Fluent Bit (fluent-bit) detects
content modification at the file, opens it, and reads 26 bytes
from offset 0, which means that fluent-bit processes the full
content previously written by app (➋). The hash signatures
at the table validate that fluent-bit reads exactly the same
content as written by app. Later, app removes the file with
the unlink syscall, and fluent-bit closes the corresponding
file descriptor (➌). At the operating system level, this means

VOLUME 11, 2023 110193

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 6. Syscalls issued by RocksDB over time, aggregated by thread name. db_bench includes the 8 client threads, rocksdb:low[0-6] refers to each
compaction thread, and rocksdb:high0 refers to the flush thread.

FIGURE 7. 99th percentile latency for RocksDB client operations.

that the inode number associated with this file (12) is now
unused and will later be attributed to a new file. However,
a possible scenario is this inode number being mapped to
a newly created file with the same name. This happens
when app creates a new file with the same name as the
previous one (app.log) and writes 16 bytes to it (➍). The
incorrect behavior reported at the issue, and observable with
DIO, happens when fluent-bit opens the new log file for
reading its content, but instead of reading from offset 0,
as expected, it starts reading at offset 26 (➎). By starting at
the wrong offset, the read syscall returns zero bytes, and the
16 bytes written by app are lost. Note that the hash signatures
are different for the content written by app and read by
fluent-bit.

To understand the reason for this behavior, we examined
Fluent Bit’s code responsible for reading new content entries
in log files. Before reading a file, Fluent Bit updates the file
position to the number of bytes already processed. This value
is kept in a database for each tracked file, identified by its
name plus inode number. Erroneously, database entries are
not deleted when files are removed from the file system.
Therefore, and going back to our running example, since
the same file name (app.log) and inode number (12) are
attributed to the newly created file, fluent-bit erroneously
assumes that the first 26 bytes of the latter log file were
already processed.

To validate the correction of this access pattern, we used
DIO to analyze a more recent version of Fluent Bit (v2.0.5),
where fixes were applied to avoid this data loss issue.
Figs. 1b and 5d show similar visualizations for the fixed
version. While the erroneous and correct versions present

similar initial behavior (same file accesses for ➊-➍), the
difference relies on the file offset being accessed by Fluent Bit
(flb-pipeline) when reading from a new file (➎). This time,
Fluent Bit starts reading from the beginning of the file (offset
0), being able to read the new 16 bytes written by app. In the
correct version, the hash signatures for the 16 bytes written
by app and read by fluent-bit match.
This example shows that DIO helps users diagnose

incorrect I/O behavior from applications and find the root
cause for dependability issues such as data loss. Further,
while this example only showcases a small amount of lost
data, it can be significantly higher when dealing with larger
log files. Moreover, this use case also exemplifies how DIO
helps validate the corrections applied to the applications’
implementation.

C. FINDING THE ROOT CAUSE OF PERFORMANCE
ANOMALIES
We now demonstrate how DIO can also ease the process of
diagnosing performance issues by identifying the root cause
of high tail latency at client requests issued to RocksDB,
an embedded key-value store (KVS) [27].

This phenomenon was first observed in SILK [28] and,
therefore, we followed the same testing methodology to
reproduce it. We used the db_bench benchmark configured
with 8 client threads performing a mixture of read-write
requests in a closed loop (YCSB A [29]).11 RocksDB
was configured with 8 background threads, namely 1 for
flushes and 7 for compactions. Fig. 7 reports a sample
of a 5-hour-long execution and depicts the 99th percentile
latency experienced by clients. Throughout this sample,
clients observe several latency spikes that range between
1.5 ms to 3.5 ms.

Finding the root cause of this performance penalty through
RocksDB codebase instrumentation would require inspecting
more than 440K LoC and adding debugging code to several
core components. Alternatively, with DIO, one can easily

11https://github.com/facebook/rocksdb/wiki/Benchmarking-tools

110194 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

trace, analyze, and visualize RocksDB execution, as depicted
in Fig. 6. Since the workload is data-oriented, we configured
DIO’s tracer to capture exclusively open, read, write,
and close syscalls. Client threads are represented as
db_bench, while rocksdb:high0 refers to the flushing
thread, and the remainder (rocksdb:lowX) to compaction
threads.

By observing the syscalls submitted over time by different
RocksDB threads, one can identify performance contention.
Namely, as shown by the highlighted red boxes, when
multiple compaction threads submit I/O requests, the number
of syscalls of db_bench threads decreases, causing an
immediate tail latency spike perceived by clients, as depicted
in Figs. 6 and 7 (in intervals ➊ and ➌, at least 5 compaction
threads submit requests). When fewer compaction threads
perform I/O, the performance of db_bench improves both
in terms of tail latency and throughput (in intervals ➋ and ➍,
only 1 to 2 compaction threads are performing I/O).

If one complements the previous observation with knowl-
edge of how Log Structured Merge-tree (LSM) KVSs
work, the problem becomes clear: RocksDB uses foreground
threads to process client requests (db_bench threads),
which are enqueued and served in FIFO order. In parallel,
background threads serve internal operations, namely flushes
(rocksdb:high0) and compactions (rocksdb:lowX).
Flushes ensure that in-memory key-value pairs are sequen-
tially written to the first level of the persistent LSM tree (L0),
and these can only proceed when there is enough space at L0.
Compactions are held in a FIFO queue, waiting to be executed
by a dedicated thread pool. Except for low-level compactions
(L0→L1), these can be made in parallel. A common problem
with compactions, however, is the interference between I/O
workflows, which generates latency spikes for client requests.
Specifically, latency spikes occur when client threads cannot
proceed because L0→L1 compactions and flushes are slow or
on hold, which happens, for instance, when several threads
compete for shared disk bandwidth (creating contention).
This is precisely the phenomenon identified in SILK, which
can negatively impact the response time and even the
availability of KVSs and services that use them [30], [31],
and that can be observed with DIO without any code
instrumentation.

D. PERFORMANCE IMPACT AND I/O EVENTS HANDLING
We now analyze the performance impact induced by diagnos-
ing I/O calls with DIO.
DIO’s setups: For these experiments, we configured DIO

to capture only the required information for diagnosing the
aforementioned I/O issues. Namely, the RocksDB use case
(§IV-C) requires information about the type and number of
syscalls, their timestamp, and the name of the process(es)
that issued them. Thus, DIO can be configured with the less
detailed tracing mode (raw).

For the Redis use case (§II), we also need to collect
information about file paths and file offsets, thus requiring

TABLE 2. Minimum DIO’s tracing mode for successfully diagnosing each
use case.

DIO’s detailed tracing mode. Since the syscalls relevant
for this use case all handle file descriptors, we can avoid
collecting the syscalls arguments that require transferring
large amounts of data from kernel to user-space, as explained
in §III-G (i.e., file paths contained in the syscalls’ arguments
and data buffers’ content). We refer to this setup as
detailedPfds.

Elasticsearch use case (§IV-A), on the other hand, requires
the analysis of syscalls whose file path information is
obtained from their arguments. Thus, for this use case,
we configure DIO with the detailedPall setup, which also
collects the file paths from syscall arguments.

Lastly, the Fluent Bit use case (§IV-B) was configured with
the detailedPallCkhash, which also captures the data buffers’
content and calculates a hash sum in kernel-space, which is
helpful for validating when both applications are processing
the same data content.

Table 2 shows DIO’s minimal configuration for success-
fully diagnosing each use case (✓✓) while pointing to more
comprehensive configurations that also allow observing these
(✓). §V-A1 provides further details about DIO’s setups.

Fig. 8 shows the execution times of Elasticsearch, Redis,
and RocksDB under the workloads described at §IV-A, §II,
and §IV-C, respectively. Fluent Bit’s use case was excluded
as it does not include a benchmark. For each application,
we compared its vanilla deployment (i.e., without tracing its
execution) with DIO and two state-of-the-art syscall tracers:
Strace [11] and Sysdig [15].
Performance analysis:The performance overhead imposed

over vanilla setups is influenced by the I/O load generated
by each application. For Elasticsearch, the least I/O intensive
application, all tracers introduce negligible overhead,
increasing the vanilla execution time (73.31 min) by up to
82 seconds.

For Redis, DIO, Sysdig and Strace increase vanilla
execution time (23.5 min) by 1.04x (24.0 min), 1.62x
(37.3 min), and 4.86x (111.9 min), respectively. By filtering
events to Redis’ working directory, Sysdig and DIO can
discard non-storage related requests (i.e., read and write
syscalls issued to network sockets), which account for
≈99% of the events generated by Redis (as shown in §II).
However, by applying these filters in kernel-space, DIO
reduces the computation in the critical path of I/O requests
and the amount of data sent to user-space, imposing less
overhead than Sysdig. Strace cannot filter events by directory
paths (only by specifying all file paths) and, consequently,

VOLUME 11, 2023 110195

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 8. Average execution time for Elasticsearch, Redis, and RocksDB use cases with DIO, Sysdig and Strace.

intercepts all generated syscalls, including those targeting
network sockets, which explains its significantly higher
performance overhead.

For RocksDB, the most I/O intensive application, Sysdig,
DIO, and Strace increase vanilla execution time (227.5 min)
by 1.07x (235.6 min), 1.38x (290.1 min), and 1.74x
(389.8 min), respectively. Although Sysdig presents the
smallest performance overhead, DIO is the only tracer
capable of providing near real-time analysis and visualization
of collected data and can still reduce the overhead imposed by
Strace.
I/O events handling: As discussed in §III, DIO uses a

fixed-sized ring buffer to collect information at user-space,
which was configured with 256 MiB per CPU core for these
experiments. When this buffer is full (i.e., if kernel processes
are producing I/O events to the ring buffer at a faster pace
than the user-space processes can consume them), new I/O
events being intercepted at the kernel level are discarded. For
the aforementioned experiments, DIO is able to capture all
storage syscalls generated by Elasticsearch (1M) and Redis
(600K). For RocksDB, given its more intensive I/O behavior,
6% of the issued syscalls (≈34M of 538M) were discarded at
the ring buffer and, therefore, not stored at DIO’s backend.

Regarding the storage space needed by DIO’s backend to
store the collected information, the Redis, Elasticsearch and
RocksDB use cases require approximately 86MiB, 282MiB
and 90GiB, respectively.

E. SUMMARY
The previous use cases demonstrate that DIO is useful
for diagnosing distinct I/O patterns. Namely, with Redis,
RocksDB, and Fluent Bit, we show that DIO can be used
by developers to observe and confirm known issues and
to validate the correction of their fixes. With Elasticsearch,
we show that our tool is useful when users wish to explore
unknown applications. Indeed, DIO is used to observe
an inefficient I/O pattern that was not known a priori.
Our integrated tracing and analysis pipeline enables users
to observe these I/O patterns without resorting to code
instrumentation or needing to manually combine multiple
tools.

Experimental results show that DIO can collect, parse,
and forward to the analysis pipeline all the required traced
information while imposing reduced performance overhead.
When compared to Strace, DIO reduces execution time for
all applications. When compared with Sysdig, performance
overhead varies with the amount of information captured
at kernel, sent to user-space, and reported to users. Despite
the discarded I/O events in RocksDB, we show that DIO
can pinpoint resource contention and help diagnose its root
cause. Moreover, unlike in Strace and Sysdig, DIO’s traced
information is automatically made available for analysis
as soon as it is collected and transmitted to the backend
component.

V. EXPERIMENTAL STUDY
We now focus on studying how DIO behaves under intensive
I/O workloads to answer the following questions:
• What is the performance and resource usage of DIO
when tracing I/O intensive applications?

• How much information can DIO capture without
discarding events?

• What is the performance and accuracy impact of DIO’s
configurations (e.g., ring buffer size, batch size) and
optimizations (i.e., tracing modes and filters)?

• How does DIO compare to other state-of-the-art syscall
tracers?

To that end, we first compare DIO with other state-of-
the-art solutions (§V-B), and then further study DIO’s inline
pipeline (§V-C), adaptability to different I/O rates (§V-D),
and the impact of its filtering mechanisms (§V-E).

A. METHODOLOGY
For the conducted experiments, we compared DIO with two
state-of-the-art syscall tracers:
• Strace: a popular diagnostic, debugging, and instruc-
tional user-space utility that leverages the ptrace
kernel feature to non-intrusively intercept syscalls [11].

• Sysdig: a tool for system troubleshooting, analysis, and
exploration that also leverages the eBPF technology to
intercept syscalls [15].

Similar to DIO, these tracers intercept syscalls invoked
by user-space applications and collect information regarding

110196 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

TABLE 3. Description of each setup used in the experiments for Strace, Sysdig, and DIO tracers.

their type, arguments, and return value. They also offer
different filtering capabilities and allow configuring which
data to collect (e.g., enabling/disabling the collection of data
buffers).

1) SETUPS
To evaluate the impact of collecting more or less detailed
information, we configured each tracer (whenever possible)
with the setups described in Table 3.

2) STORAGE BACKENDS
While DIO offers an integrated analysis pipeline to collect,
analyze, and visualize tracing data, Strace and Sysdig focus
only on the tracing phase, saving collected data to disk.
To fairly compare the three tracers and study the impact
of different storage backends, in addition to the default
deployment of DIO (i.e., sending collected information
directly to the remote analysis pipeline), we also evaluated
DIO’s performance when saving traced data directly to
disk.

Moreover, to study the feasibility of building an integrated
diagnosis pipeline with existing tracing solutions, we use
the Logstash [32] data processing tool to automatically
parse and forward Sysdig events to a similar inline analysis
pipeline as in DIO (i.e., composed by Elasticsearch and
Kibana). Specifically, for these experiments, Sysdig is
configured to write collected data to the standard output,
which is redirected (via a Unix pipe) to Logstash. The latter
reads, parses, and forwards collected events, in batches, to
Elasticsearch.

3) WORKLOAD AND COLLECTED METRICS
To produce a stress-test scenario, we used the Filebench
benchmark, a popular framework for file system and
storage benchmarking [33], [34]. Experiments consisted of

running Filebench with the FileServer workload, configured
to access 10.000 files, each sizing 128 KiB, through
4 threads performing storage I/O requests for 20 minutes.
The experiments were conducted in the same testbed as
described in §IV. Results include the average and standard
deviation of the number of operations per second (ops/s) for
three independent runs. Unless stated otherwise, the standard
deviation for all experiments is equal or inferior to 3% of the
corresponding throughput.

The Dstat [35] tool was used to obtain system resource
statistics, including CPU, memory, disk, and network usage.

Finally, the storage overhead imposed by each tested setup
(i.e., size of the generated tracing file or Elasticsearch’s
index size) was also computed, as well as the number of
intercepted syscalls, including complete (events saved with
all the information), incomplete (events saved with partial
information), and lost events (events discarded in kernel-
space).

B. COMPARISON WITH STATE-OF-THE-ART TRACERS
First, we compare DIO’s performance, resource usage, and
tracing accuracy against Strace and Sysdig in a stress-test
environment (depicted in Fig. 9). We start by doing an
individual analysis for each tracer, and then we discuss how
these compare to each other.

1) PER-TRACER ANALYSIS
a: VANILLA
The Filebench benchmark running without any tracer (vanilla
setup) generates approximately 164 Kops/s (depicted by
the black dashed line). Unless stated otherwise, the
performance overhead values discussed in this section
correspond to the decrease in throughput percentage of a
given setup when compared with the vanilla setup.

VOLUME 11, 2023 110197

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 9. Performance overhead and collected events when tracing Filebench with Strace, Sysdig, and DIO.

b: STRACE
Strace imposes high performance overhead over Filebench’s
workload (depicted by the red line), reducing through-
put by 73% with the least detailed setup (raw). The
imposed overhead increases further as more detailed infor-
mation is captured. Namely, with the more detailed setup
(detailedPallCplain), Strace achieves only 30 Kops/s, increas-
ing the overhead to 82%.

While Strace can save all intercepted syscalls without
losing tracing data (i.e., no incomplete or lost events), the
number of collected events decreases with more detailed
setups, ranging from 73M (raw) to 48M (detailedPallCplain).
This is a consequence of Strace’s performance overhead,
which decreases the number of operations per second done
by Filebench and, consequently, the total number of issued
syscalls.

c: SYSDIG
Sysdig incurs reduced performance overhead over Filebench,
decreasing throughput by 12% with the detailedPall setup.
Similarly to Strace, capturing more information imposes
higher overhead. Namely, with the detailedPallCplain setup,
Sysdig achieves 127 Kops/s, increasing the overhead to 22%.

With the reduced performance overhead, Filebench gen-
erates more operations per second, and consequently, more
syscalls are performed in total. When writing data to
disk, Sysdig saves between 208M (detailedPall) to 235M
(detailedPallCplain) of complete events, with only 41 incom-
plete events (i.e., missing information about file paths).
However, in these experiments, Sysdig is unable to report the
process name for all captured events.

When sending collected data to Elasticsearch, Sysdig
still imposes reduced overhead (≈11%) but only saves 2M
events, some of them with incomplete data (between 131 and
314 incomplete events). This is a consequence of Sysdig
producing data faster than Logstash can process it, filling
the Unix pipe connecting Sysdig and Logstash and forcing
Sysdig to discard events. Interestingly, when saving data to

Elasticsearch, Sysdig can obtain the process name for all
events.

d: DIO
The performance overhead imposed byDIO varies depending
on the storage backend used (i.e., file or Elasticsearch) and the
amount of computation performed in kernel space (i.e., in the
critical path of I/O requests).

When writing data to disk, the raw and detailedPfds
setups process all intercepted syscalls, saving ≈134M
complete events, but reduce Filebench’s throughput by 50%
(with a standard deviation of 6% for detailedPfds). The
DetailedPall and detailedPallCuhash setups start losing tracing
data (between 20M-28M incomplete and 51M-85M lost
events) but impose less overhead (40%), achieving 98 Kops/s.

By capturing the file paths from syscall arguments
(detailedPall) and the data buffers’ content
(detailedPallCuhash), DIO needs to transfer larger events from
kernel to user-space. Moreover, by computing a hash sum
of the buffers’ content in user-space, DIO further delays the
events’ pulling from the ring buffer. If no space is available
on the ring buffer to send an event to user-space, the event is
discarded in the kernel and considered lost.

Interestingly, as the number of lost events increases,
the performance overhead decreases due to the additional
computation of copying data from the kernel to user-space
that happens in the critical I/O path of a request.

The detailedPallCkhash setup reduces the amount of data to
transfer to user-space by computing the hash sum of buffers’
content in kernel space.While it allowsminimizing the loss of
events (i.e., no incomplete or lost events are observed), it ends
up adding heavy computation to I/O requests’ critical path,
imposing higher overhead (66%).

A similar phenomenon is visible when using Elasticsearch
as DIO’s storage backend: DIO saves fewer events (48M to
52M) but imposes less overhead (14% to 51%). However,
these results show two other phenomena. First, DIO’s rate
for processing and saving events to Elasticsearch is limited
to≈43K events/s, thus filling up the ring buffermore quickly

110198 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 10. CPU usage by Strace, Sysdig, and DIO.

FIGURE 11. Memory usage by Strace, Sysdig, and DIO.

FIGURE 12. Storage usage by Strace, Sysdig, and DIO.

and losing more events. Second, when writing data to disk,
the performance overhead is especially dictated by the extra
computation of copying data to user-space. However, when
writing data to Elasticsearch, the overhead imposed by the
extra processing in kernel to gather more detailed information
has a higher impact (i.e., more detailed setups impose higher
overhead). This is more noticeable for the detailedPallCkhash
setup that due to computing the hash sum in kernel, reduces
throughput by 51% (with a standard deviation of 4%).

2) COMPARATIVE ANALYSIS
Next, we compare the three tracers regarding their imposed
performance overhead, tracing accuracy, and resource usage.

a: PERFORMANCE OVERHEAD
Strace imposes the highest overhead over Filebench’s work-
load, while Sysdig imposes the lowest. DIO offers better
results than Strace for all setups and storage backends,

VOLUME 11, 2023 110199

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 13. Network usage by Strace, Sysdig, and DIO.

resulting from using a low overhead technology, eBPF,
instead of a more costly approach like ptrace. When
configured with the Elasticsearch storage backend, DIO
provides results closer to Sysdig. In general, all tracers
impose higher overhead when collecting more detailed
information.

b: COLLECTED EVENTS
By imposing the lowest performance overhead, Sysdig is
also the tracer that saves more events when writing these to
disk. In the same way, by imposing the highest overhead,
Strace saves fewer events than the other tracers. When
sending data to Elasticsearch, both Sysdig and DIO are
forced to discard events. However, by including a custom
implementation to communicate directly with Elasticsearch,
DIO can save significantly more events than Sysdig. As in
the performance overhead results, collecting more detailed
information generally translates into more incomplete and
lost events for DIO and Sysdig.

c: CPU USAGE
Fig.10 shows the CPU usage for each tracer and setup. Due to
its synchronous approach for intercepting syscalls and higher
performance overhead, Strace exhibits significant CPU idle
time, which increases when more detailed data is collected.
Vanilla, Sysdig, and DIO setups have negligible idle time
but exhibit different values for the time spent in user-space
(usr) and kernel-space (sys). The additional usr time used by
DIO is explained by the processing done by our solution in
user-space, as explained in §III-B). However, DIO’s usr time
reduces, while sys time increases, for setups capturing more
detailed information, as these require extra processing at the
critical path of I/O requests.

d: MEMORY USAGE
Regarding memory consumption (Fig. 11), it is noticeable an
increased usage of cache resources (cach) for setups writing
traced data to disk, which is a consequence of using more
space from the operating system’s page cache. This value
increases further when considering more detailed setups.

DIO presents higher values for used memory, which is
explained by the eBPF maps and the ring buffer used by
our tracer (e.g., the default size of the ring buffer is 1GiB
in total) and by writing events in batches to Elasticsearch
for increased performance (i.e., the default configuration is
7MiB per thread, 28MiB in total). The latter justifies why
our solution uses more memory when using the Elasticsearch
backend instead of the file one. Finally, the increase in used
memory for Sysdig, with the Elasticsearch backend, is due to
Logstash’s internal buffers for processing traced data.

e: STORAGE USAGE
Fig. 12 shows the storage space used by each tracer
when writing data to disk (12a) and when sending events
to Elasticsearch (12b). Strace generates a trace file with
a smaller size (around 9GiB for raw, detailedPargs, and
detailedPall setups), which can be explained by the smaller
number of events it collects. DIO collects more events and
writes data to disk in a JSON format, thus generating larger
files (from 40GiB with detailedPallCuhash to 70GiB with
detailedPfds). Sysdig, on the other hand, writes data to disk
in a binary format, and therefore, although being the tracer
that collects more events, it can create compact files (≈31GiB
with detailedPall setup). Nonetheless, both Strace and Sysdig
generate larger trace files when capturing the data buffer’s
content (detailedPallCplain setup), generating files of 79GiB
and 179GiB, respectively. By contrast, DIO minimizes the
trace size by saving a hash sum of the buffers’ content
(detailedPallCuhash and detailedPallCkhash setups).
When sending data to Elasticsearch, the resulting index

size for Sysdig is around 1.4GiB, while for DIO it varies
between 8.9GiB and 12.1GiB. The difference between the
two is mainly dictated by the number of collected events and
the amount of detailed information captured.

f: NETWORK USAGE
As depicted in Fig. 13, when considering Sysdig and DIO
using Elasticsearch as the storage backend, DIO consumes
more network bandwidth (i.e., 2MiB/s for Sysdig and
between 17MiB and 20MiB/s for DIO). Since DIO sends
more megabytes per second to Elasticsearch, it can process
traced data from the ring buffer faster and save more
information at the backend, as shown in Fig. 9.

From the previous results and analysis, one can extract the
following main takeaways.

Takeaway 1. Capturing more detailed information from
syscalls induces higher performance and resource usage
overhead. Also, when syscalls are intercepted asyn-
chronously (i.e., in DIO and Sysdig), it may lead to a
larger number of incomplete and lost events. For syn-
chronous approaches (i.e., in Strace), the performance
overhead is more noticeable.

110200 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 14. Performance overhead, collected events, and resource usage for different ring buffer sizes in DIO. The blue color pinpoints the
default configuration.

FIGURE 15. Performance overhead, collected events, and resource usage for different batches sizes in Sysdig. The blue color pinpoints the default
configuration.

Takeaway 2. The storage backend where traced data
is stored influences the number of collected events and
performance overhead. A slower backend (i.e., using
Elasticsearch instead of a high-performance local disk)
reduces the overhead over the application but leads to a
higher number of incomplete and lost events for Sysdig
and DIO.

Takeaway 3. Tracers using eBPF technology (i.e.,
Sysdig and DIO) exhibit distinct trade-offs related to
the balance between the computation done in user-space
and in kernel-space. More computation in user-space
delays the collection of events from the ring buffer, which
results in more discarded events and less performance
overhead. More computation in kernel induces a higher
performance penalty for the traced application.

Takeaway 4. DIO offers the best trade-off in terms
of performance overhead and collected events when
considering a full inline pipeline for tracing, analyzing,
and visualizing I/O syscalls (i.e., it captures between
23x to 28x more events when compared with Sysdig,
while maintaining performance overhead under 51%).
On the other hand, Sysdig presents the best trade-off
regarding performance overhead and collected events
when considering only the tracing step for a local disk
backend.

C. INLINE ANALYSIS PIPELINE
Next, we assess the best configurations to provide an efficient
inline analysis pipeline (i.e., in which traced data is sent
directly to the Elasticseach backend). We start by studying
the impact of varying the ring buffer size in DIO, and
evaluating both Sysdig and DIO when sending batches
of different sizes to Elasticsearch. Then, we discuss the
advantages and drawbacks of following an inline vs offline
approach (i.e., saving data to disk and sending it posteriorly
to Elasticsearch).

For these experiments, both tracers are configured with the
detailedPall setup for a fair comparison.

1) RING BUFFER’S SIZE IMPACT IN DIO
To further explore Takeaway 3, it is important to assess
the impact that different ring buffer sizes have on DIO’s
performance and amount of collected events.

As expected and shown in Fig. 14a, the larger the
ring buffer, the more events DIO collects. With a smaller
configuration (16 MiB), DIO saves 38M events. If a larger
ring buffer is used (4096 MiB), it saves up to 79M events.
However, increasing the ring buffer size impacts the

performance overhead imposed over Filebench. Namely,
overhead ranges from 21% (16 MiB configuration) to 27%
(4096MiB configuration). Regarding resource usage, varying
the ring buffer size has minimal impact on CPU usage,
as shown in Fig. 14b. As for memory consumption (depicted
in Fig. 14c), the larger the ring buffer, the more used

VOLUME 11, 2023 110201

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 16. Performance overhead, collected events, and resource usage for different batches sizes in DIO. The blue color pinpoints the default
configuration.

memory DIO needs, ranging from 1.4GiB (16 MiB) to
5.4GiB (4096 MiB).

The 1024 MiB configuration offers a good trade-off
between performance overhead (23%), collected events
(52M), and memory usage (3.7 GiB in total), and therefore
was selected as the default ring buffer configuration for DIO
in all the experiments discussed at this section.

Takeaway 5. With a larger ring buffer, DIO collects
more events from kernel in user-space. However,
it increases performance overhead and memory usage.

2) ELASTICSEARCH’S BATCH SIZE IMPACT
To complement the conclusions from Takeaways 2 and 4,
we next assess the impact of using different batch sizes for
transmitting traced data to Elasticsearch.

Fig. 15a shows the throughput and number of collected
events for Sysdig when Logstash sends batches of 125, 250,
500, 1K, 2K, 4K, and 15K events to Elasticsearch. The
default configuration used in our experiments (125 events)
imposes the least overhead (12%) but saves less information
(≈2M events). Increasing the batch size results in higher
performance overhead, while the number of collected events
increases only for sizes inferior to 1K. For the latter, Sysdig
collects more events (≈6.3M) and imposes a performance
overhead of 31%. For larger batches, the overhead tends
to stabilize around 40%, but Sysdig starts collecting less
information (e.g., with a batch size of 15K, Sysdig collects
4.9M events). As depicted in Fig. 15b, CPU usr time increases
with larger batches. The used memory (shown in Fig. 15c)
varies between 1.6 GiB and 1.9 GiB.

In DIO, due to a different approach in terms of design
and implementation (i.e., it does not resort to Logstash,
as the tracer sends information directly to Elasticsearch
to be more efficient), batch sizes must be configured in
MiB instead of the number of events. Fig. 16a shows the
throughput and number of collected events for DIO when
configured with batches of 1, 4, 7, 10, and 15 MiB. Like
in Sysdig, with larger sizes, DIO collects more events and

FIGURE 17. Execution times for inline and offline analysis approaches
with Sysdig and DIO.

imposes higher performance overhead. However, the variance
across different size configurations is small, always capturing
more than 37M events and imposing no more than 24%
of overhead. In detail, a batch size of 1 MiB imposes
the smallest overhead (17%) but collects less information
(37M events). On the other hand, a size of 10 MiB allows
collecting more events (54M) but imposes the highest
overhead (24%).

Contrarily to Sysdig, increasing the batch size in DIO has a
negligible effect on CPU usage (Fig. 16b), but increases used
memory, going from 2.0 GiB (batch size of 1MiB) to 2.8 GiB
(batch size of 15 MiB). Therefore, our experiments consider
a default batch size of 7MiB for DIO.

Takeaway 6. In Sysdig, increasing the batch size has
a bigger effect in the balance between performance
overhead and events captured than in DIO.

Takeaway 7.When considering different batch size
configurations, DIO is able to capture from 6x to 27x
more events than Sysdig. Also, the performance overhead
in DIO is always kept below 23%, while in Sysdig,
it drops up to 41% for larger batches.

110202 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 18. Performance overhead and collected events of DIO’s setups (with Elasticsearch backend) when tracing Filebench with different I/O rates.

3) INLINE VS. OFFLINE ANALYSIS
According to the results from §V-B and Takeaway 2, both
Sysdig and DIO save more tracing information when writing
data to a local disk. However, such an option requires users
to, later on, parse and forward this information from disk
to Elasticsearch in an offline fashion. Next, we evaluate
the benefits and drawbacks of following offline and inline
approaches.

For inline experiments, Sysdig is configured with a batch
size of 1K since it allows collecting more events, and DIO
with the default batch size of 7MiB, which offers a good
trade-off between performance overhead, collected events,
and resource usage, as observed in §V-C2.

For offline experiments, a custom DIO’s trace processor
is used to read traced data from disk, parse, and forward
it to Elasticsearch. For Sysdig, since data is written in a
binary format, we use Sysdig’s functionality to read the
tracer’s binary data and redirect its output to Logstash (via a
Unix pipe) for parsing and forwarding data to Elasticsearch.
In both tracers, we use a batch size of 15K events (the largest
size supported for our experimental setup) to optimize data
transmission speed to the backend.

Fig. 17 shows the time spent by each tracer when collecting
information (tracing), and processing and forwarding data
to Elasticsearch (parsing). Starting with the inline approach,
both tracers present similar execution times (≈24 mins for
Sysdig and≈26 mins for DIO), but Sysdig can only send 6M
events to Elasticsearch, while DIO sends up to 52M events.

When following an offline approach, DIO sends up to
108M events to Elasticsearch, taking 21 mins to collect
information (tracing phase) and 205 mins to process and
forward it (parsing phase). Sysdig can collect even more
information (around 230M events) during≈24mins but takes
about ≈627 mins (i.e., 10 hours and 27 min) to process
and forward all these events to Elasticsearch. By further
inspecting these results, we noticed that Sysdig takes only
≈32 mins reading the 230M events saved on disk, thus

exposing Logstash as the main reason for the long parsing
time.

Takeaway 8. Inline approaches significantly reduce the
time for users to start analyzing collected data, at the cost
of discarding syscalls issued by the targeted application.

Takeaway 9. When following an offline approach,
Sysdig captures more events but takes an impractical
amount of time to parse and forward traced data to
the backend. Since DIO is implemented and optimized
to interact directly with Elasticsearch, it exhibits better
performance.

D. DIO’s ADAPTABILITY TO DIFFERENT I/O RATES
In practice, data-centric applications (e.g., databases, key-
value stores) access storage resources with different I/O
rates. Fig. 18 shows DIO’s performance overhead and
collected events when Filebench is configured to generate I/O
operations at specific rates (or inferior if the system cannot
handle these), starting at 25 Kops/s.

When Filebench issues operations at a rate inferior or equal
to 25 Kops/s, all setups collect the full information from
issued syscalls (36M events).

With a rate of 30 Kops/s, the setups capturing more
detailed information (detailedPall, detailedPallCuhash , and
detailedPallCkhash) save some incomplete events (4M to
6M). Lost events happen for rates equal to or superior
to 35 Kops/s (3M to 5M), but DIO only starts impacting
Filebench’s performance for rates over 40 Kops/s and mostly
with detailedPallCkhash.
The difference between vanilla and DIO’s setups is more

noticeable for rates equal to or greater than 100 Kops/s, where
performance overhead ranges from 15% to 51%, and the
number of lost events varies from 21M to 182M syscalls.

VOLUME 11, 2023 110203

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

FIGURE 19. Performance overhead and collected events of DIO (with detailedPall setup and Elasticsearch storage backend) when applying
different filters.

Takeaway 10. The performance overhead and number
of events collected by DIO changes according to the I/O
rate of applications. Under 25 Kops/s, all setups collect
the full set of issued operations, while most setups only
have a noticeable performance impact over Filebench
when surpassing 100 Kops/s.

E. DIO’s FILTERS IMPACT
As discussed in §III-B, capturing only events of interest helps
users reduce the overhead imposed on the target application
and the volume of data to analyze. To evaluate the impact
of filtering events at the tracing phase, we now compare
the default configuration of DIO (detailedPall mode with
the Elasticsearch storage backend, which does not apply any
filters) with four new setups:
• passive_filter - captures only the rename syscall type,
which is never invoked by Filebench.

• orwc_filter - captures a subset of syscalls (i.e., open,
read, write, and close).

• read_filter - captures only read syscalls.
• tid_filter - captures all syscalls made by a specific thread
of Filebench.

The passive_filter evaluates the impact of having an
active tracepoint that is never triggered by the targeted
application, while orwc_filter and read_filter assess the
impact of activating more or less tracepoints. Finally, the
tid_filter evaluates the impact of filtering events of interest
in kernel-space.

a: COLLECTED EVENTS
Fig. 19a shows the number of collected events and perfor-
mance overhead for each setup. When capturing all events
with detailedPall (i.e., without any filters), DIO intercepts
210M syscalls, saving 42M complete and 10M incomplete
events while losing 158M events. The orwc_filter setup
reduces the events of interest to 145M, which allows saving
more complete events (≈51M) and reducing the incomplete
and lost events to 0 and 94M, respectively. By capturing
only read syscalls, the read_filter further reduces intercepted

events to 27M, being able to save them all along with their
complete information (i.e., no incomplete or lost events).
Similarly, by filtering events from a specific TID in kernel-
space, the tid_filter setup intercepts and saves 35M events of
interest.

b: PERFORMANCE IMPACT
As shown in Fig. 19a, DIO does not impose extra overhead if
an active probe is never triggered (passive_filter), achieving
a performance throughput similar to vanilla (165 Kops/s).
When activating all supported tracepoints (detailedPall), DIO
introduces an overhead of 22%. By filtering events by a
specific subset of syscalls (orwc_filter), DIO reduces the
number of active tracepoints and therefore decreases the
overhead to 16%.

However, the read_filter setup, which only activates one
tracepoint, imposes similar overhead as in detailedPall. These
results are explained by the number of eventPath events
(used to map file descriptors to file paths, as described
in §III-C3) saved by each setup. Namely, the detailedPall
and orwc_filter setups can only save between 122K to 358K
eventPaths. On the other hand, the read_filter setup saves
all generated eventPaths (≈7M), which requires copying
more data from kernel to user-space, imposing a higher
performance overhead. The same is valid for tid_filter, which
increases overhead to 28% because it also saves a large
number of eventPaths (≈5M).

c: RESOURCE USAGE
Figs. 19b and 19c show CPU and memory usage results. The
passive_filter setup presents similar CPU consumption as in
vanilla since it does not intercept any syscall. The other setups
increase usr time by≈16%. As for memory consumption, all
DIO’s setups present similar results, which is explained by the
static allocation of memory done by our system (e.g., for the
ring buffer). Regarding storage usage, by reducing the events
of interest, the read_filter and tid_filter setups minimize the
detailedPall’s index size by 42% (7GiB) and 50% (6GiB),
respectively.

110204 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

Takeaway 11. DIO’s filters enable users to target only
events of interest, which reduces storage overhead,
improves the number of collected events, and, depending
on the filter type and I/O workload, reduces performance
overhead.

F. SUMMARY
To sum up, the results and takeaways discussed in this section
show that the approach followed byDIO is key for building an
integrated tracing and analysis pipeline that can offer a good
trade-off regarding performance overhead, tracing accuracy,
and timely analysis for users.

First, by relying on the eBPF technology, DIO can intercept
applications’ syscalls without modifying their source code
while minimizing tracing performance overhead.

Secondly, the flexibility offered by DIO’s different tracing
modes allows balancing the tracing accuracy with the
performance and storage overheads by configuring the
detail of the information being captured. Likewise, DIO’s
filtering capabilities enable discarding fewer I/O events of
interest while reducing the storage capacity needed at the
Backend. Specifically, the storage overhead imposed by DIO
varies according to the tracing mode, filters used, and the
number of events generated by the application (e.g., 86 MiB
for the Redis use case with ≈600K events collected
with the detailedPall mode, 90 GiB for the RocksDB
use case with more than 500M events collected with the
raw mode).

Moreover, by following an inline approach, DIO reduces
the need to store traced data locally and enables users to
analyze and visualize collected data in near real-time, which
is not possible when following an offline design. Further,
our custom design integrating the Tracer directly with the
Backend component exhibits significantly better accuracy
(i.e., in terms of the amount of collected data at the Backend)
than by combining different state-of-the-art tools (i.e., Sysdig
and Logstash).

In practice, and as shown in §IV, data-centric applications
such as RocksDB, Elasticsearch, and Redis do not fully stress
the underlying storage resources, and, by leveraging DIO’s
customized, flexible, and integrated design, users can capture
the full set of syscalls or, at least, have a negligible number
of events discarded that do not compromise the diagnosis of
such applications.

VI. RELATED WORK
Table 4 shows a comparison between DIO and related
solutions in terms of captured tracing information, filtering
capabilities, tracing and analysis integration (O-offline,
I-inline), analysis customization, and predefined visualiza-
tion support. While some tools are able to trace (T) the
information required for the paper’s use cases, only DIO
provides users with the analysis (A) capabilities to diagnose
them.

TABLE 4. Comparison between DIO and related solutions regarding:
i) tracing and (O-offline, I-inline) analysis functionalities, and ii) support
for tracing (T) and analyzing (A) the use cases from §II and §IV.

A. I/O TRACING
Storage I/O diagnosis is often done by capturing applications’
requests in user-space through source code instrumenta-
tion [7], [8], [9], [10]; through middleware libraries [37],
[38] that are restricted to specific sets of applications
(e.g., LD_PRELOAD only works with dynamic libraries); or
at lower kernel layers [5], [20], [38], such as the Virtual
File System, where optimizations like I/O merging make
it impossible to observe the exact requests submitted by
applications.

To intercept I/O operations non-intrusively and closer to
the requests made by applications, other solutions rely on the
syscall interface. As shown in Table 4, these explore distinct
tracing technologies, including ptrace ([11], [18]), eBPF ([4],
[15], [17]), LTTng ([3], [16], [36]), and auditd ([19]), which
allow gathering information related with the entry and exit
points of syscalls, including their arguments, return value,
timestamps, PIDs, etc. Similar to DIO, some tools enrich
traced data with additional information such as the process
name ([4], [15], [17], [19]), which is useful for observing the
I/O patterns at §IV-B, and §IV-C. However, DIO is the only
tool that collects file offsets, which are crucial for diagnosing
the use case presented in §IV-B.

Only CaT [4], Tracee [17], and DIO aggregate the
information contained at the entry and exit points of each
syscall into a single event, thus simplifying its posterior
analysis. This is done at kernel-space to reduce the data
transferred to user-space. Further, these are the only tools,
along with strace [11] and Sysdig [15], that support filtering
at the tracing phase.

VOLUME 11, 2023 110205

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

B. INTEGRATED ANALYSIS PIPELINE
Several solutions only cover the tracing step, leaving the
integration with analysis pipelines to be done by users [11],
[15], [16], [17]. Other tools provide modules for automating
the analysis of traced data but follow an offline approach,
where this data needs to be stored first and, only later, it is
parsed and provided as input to the analysis pipeline [3],
[4], [18], [36]. Only DIO and Longline [19] automatically
parse and forward traced events to the analysis pipeline by
following an inline (near real-time) approach.

C. SYSCALL ANALYSIS AND VISUALIZATION
Some of the existing tools support analysis modules special-
ized for their concrete use cases (e.g., causality [4], [18],
security analysis [19]), which only consider specific infor-
mation collected from traces (e.g., syscall types). Therefore,
these do not provide the flexibility to implement custom
analysis algorithms nor enable users to access and explore
other information contained in the collected I/O traces.
On the other hand, solutions similar to DIO that support
customizable analysis fail to capture relevant information to
diagnose the use cases discussed in this paper [3], [36].
DIO provides users access to the complete set of captured

information (e.g., syscall type, arguments, offsets), allowing
them to build new algorithms over the data fields that aremore
relevant to their analysis goals.

Moreover, DIO offers predefined representations that
automatically summarize and allow the visualization of
the I/O patterns discussed in the paper. Moreover, our
tool enables users to create new visualizations commonly
supported by other diagnosis solutions (e.g., tables, pie charts,
histograms, heatmaps, time series) [3], [19], [36].

To sum up, DIO is the first solution providing an integrated
inline diagnosis pipeline that is designed to be flexible and
customizable, while covering a larger set of information from
syscalls than other state-of-the-art solutions.

VII. CONCLUSION
This paper presents DIO, a generic tool for observing
and diagnosing I/O interactions between applications and
in-kernel POSIX storage backends. Through a pipeline
that automates the process of tracing, filtering, correlating,
and visualizing millions of syscalls and by enriching the
information provided by these with additional context, DIO
helps users observe I/O issueswhile reducing the search space
for finding their root cause when, for instance, source code
inspection is required.

Our experiments with widely used systems show that
DIO provides key information for exploring I/O requests,
observing inefficient or erroneous I/O access patterns that
lead to performance degradation or data loss, and identifying
resource contention inmultithreaded I/O that leads to high tail
latency. Further, a detailed evaluation comparing DIO with
state-of-the-art tracers shows that our integrated diagnosis
pipeline enables users to diagnose applications in a more

timely fashion while providing the best balance in terms of
performance overhead and tracing accuracy.

REFERENCES
[1] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and

R. H. Arpaci-Dusseau, ‘‘Redundancy does not imply fault tolerance:
Analysis of distributed storage reactions to single errors and corruptions,’’
in Proc. 15th USENIX Conf. File Storage Technol., 2017, pp. 149–166.

[2] D. Roselli, J. R. Lorch, and T. E. Anderson, ‘‘A comparison of file system
workloads,’’ in Proc. USENIX Annu. Tech. Conf., 2000, pp. 41–54.

[3] H. Daoud and M. R. Dagenais, ‘‘Performance analysis of distributed
storage clusters based on kernel and userspace traces,’’ Softw., Pract.
Exper., vol. 51, no. 1, pp. 5–24, Jan. 2021.

[4] T. Esteves, F. Neves, R. Oliveira, and J. Paulo, ‘‘CAT: Content-
aware tracing and analysis for distributed systems,’’ in Proc. 22nd Int.
Middleware Conf., Dec. 2021, pp. 223–235.

[5] A. Saif, L. Nussbaum, and Y.-Q. Song, ‘‘IOscope: A flexible I/O tracer for
workloads’ I/O pattern characterization,’’ in Proc. Int. Conf. High Perform.
Comput. Cham, Switzerland: Springer, 2018, pp. 103–116.

[6] T. Esteves, R.Macedo, R. Oliveira, and J. Paulo, ‘‘Diagnosing applications’
I/O behavior through system call observability,’’ in Proc. 53rd Annu.
IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshops, Apr. 2023,
pp. 1–8.

[7] (2022). Jaeger: Open Source, End-to-End Distributed Tracing. [Online].
Available: https://www.jaegertracing.io

[8] (2022. Zipkin. [Online]. Available: https://zipkin.io
[9] S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and

A. Choudhary, ‘‘IOPin: Runtime profiling of parallel I/O inHPC systems,’’
in Proc. SC Companion, High Perform. Comput., Netw. Storage Anal.,
Nov. 2012, pp. 18–23.

[10] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, ‘‘Scalable I/O tracing
and analysis,’’ in Proc. 4th Annu. Workshop Petascale Data Storage,
Nov. 2009, pp. 26–31.

[11] (2022). Strace: Linux Syscall Tracer. [Online]. Available: https://strace.io
[12] M. Gebai and M. R. Dagenais, ‘‘Survey and analysis of kernel and

userspace tracers on Linux: Design, implementation, and overhead,’’ ACM
Comput. Surv., vol. 51, no. 2, pp. 1–33, Mar. 2019.

[13] S. McCanne and V. Jacobson, ‘‘The BSD packet filter: A new architecture
for user-level packet capture,’’ in Proc. Winter USENIX Conf., vol. 46,
1993, pp. 259–269.

[14] M. Desnoyers and M. R. Dagenais, ‘‘The LTTng tracer: A low impact
performance and behavior monitor for GNU/Linux,’’ in Proc. Ottawa
Linux Symp., 2006, pp. 209–224.

[15] (2022). Sysdig. [Online]. Available: https://github.com/draios/sysdig/
[16] I. U. Akgun, G. Kuenning, and E. Zadok, ‘‘Re-animator: Versatile high-

fidelity storage-system tracing and replaying,’’ inProc. 13th ACM Int. Syst.
Storage Conf., May 2020, pp. 61–74.

[17] (2022). Tracee: Linux Runtime Security and Forensics Using eBPF.
[Online]. Available: https://github.com/aquasecurity/tracee

[18] Z. Ren, C. Liu, X. Xiao, H. Jiang, and T. Xie, ‘‘Root cause localization for
unreproducible builds via causality analysis over system call tracing,’’ in
Proc. 34th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2019,
pp. 527–538.

[19] S. Yoo, J. Jo, B. Kim, and J. Seo, ‘‘LongLine: Visual analytics system for
large-scale audit logs,’’ Vis. Informat., vol. 2, no. 1, pp. 82–97, Mar. 2018.

[20] D. N. Jha, G. Lenton, J. Asker, D. Blundell, and D. Wallom, ‘‘Holistic
runtime performance and security-aware monitoring in public cloud
environment,’’ in Proc. 22nd IEEE Int. Symp. Cluster, Cloud Internet
Comput. (CCGrid), May 2022, pp. 1052–1059.

[21] (2022). Elasticsearch: The Heart of the Free and Open Elastic Stack.
[Online]. Available: https://www.elastic.co/elasticsearch/

[22] (2022). Kibana: Your Window Into the Elastic Stack. [Online]. Available:
https://www.elastic.co/kibana/

[23] Redis. (2022). Redis. [Online]. Available: https://redis.io
[24] (2022). Vega-Lite—A Grammar of Interactive Graphics. [Online]. Avail-

able: https://vega.github.io/vega-lite/
[25] A. Bijlani and U. Ramachandran, ‘‘Extension framework for file systems

in user space,’’ in Proc. USENIX Annu. Tech. Conf., 2019, pp. 121–134.
[26] (2022). Fluent Bit: An End to End Observability Pipeline. [Online].

Available: https://fluentbit.io
[27] Facebook. (2022). RocksDB: A Persistent Key-Value Store for Fast Storage

Environments. [Online]. Available: https://rocksdb.org

110206 VOLUME 11, 2023

T. Esteves et al.: Toward a Practical and Timely Diagnosis of Application’s I/O Behavior

[28] O. Balmau, F. Dinu, W. Zwaenepoel, K. Gupta, R. Chandhiramoorthi, and
D. Didona, ‘‘SILK: Preventing latency spikes in log-structured merge key-
value stores,’’ in Proc. USENIX Annu. Tech. Conf., 2019, pp. 753–766.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
‘‘Benchmarking cloud serving systems with YCSB,’’ in Proc. 1st ACM
Symp. Cloud Comput., Jun. 2010, pp. 143–154.

[30] J. Dean and L. A. Barroso, ‘‘The tail at scale,’’ Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[31] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, ‘‘Tales of the tail:
Hardware, OS, and application-level sources of tail latency,’’ in Proc. ACM
Symp. Cloud Comput., Nov. 2014, pp. 1–14.

[32] (2022). Logstash: Centralize, Transform & Stash Your Data. [Online].
Available: https://www.elastic.co/logstash/

[33] V. Tarasov, E. Zadok, and S. Shepler, ‘‘Filebench: A flexible framework for
file system benchmarking,’’ Login, USENIXMag., vol. 41, no. 1, pp. 6–12,
Mar. 2016.

[34] (2022). Filebench: A Model Based File System Workload Generator.
[Online]. Available: https://github.com/filebench/filebench

[35] (2022). Dstat: Versatile Tool for Generating System Resource Statistics.
[Online]. Available: https://linux.die.net/man/1/dstat

[36] I. Kohyarnejadfard, D. Aloise, M. R. Dagenais, and M. Shakeri,
‘‘A framework for detecting system performance anomalies using tracing
data analysis,’’ Entropy, vol. 23, no. 8, p. 1011, Aug. 2021.

[37] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J. Wright,
‘‘Modular HPC I/O characterization with Darshan,’’ in Proc. 5th Workshop
Extreme-Scale Program. Tools (ESPT), Nov. 2016, pp. 9–17.

[38] M. I. Naas, F. Trahay, A. Colin, P. Olivier, S. Rubini, F. Singhoff,
and J. Boukhobza, ‘‘EZIOTracer: Unifying kernel and user space I/O
tracing for data-intensive applications,’’ in Proc. Workshop Challenges
Opportunities Efficient Performant Storage Syst., 2021, pp. 1–11.

TÂNIA ESTEVES is currently pursuing the Ph.D.
degree with the Doctoral Program in Informatics,
University of Minho. She is also a Researcher
with the HASLab, one of the research units
of INESC TEC and University of Minho. Her
current research interest includes distributed
systems focuses on the tracing and analysis
of storage I/O. For more information, please
visit: https://www.inesctec.pt/en/people/tania-
conceicao-araujo.

RICARDO MACEDO received the joint Ph.D.
degree from the Universities of Minho, Aveiro,
and Porto, in 2023, under the MAP-i Doctoral
Program. He is currently an Assistant Researcher
with the HASLab, one of the research units
of INESC TEC and the University of Minho,
Portugal. His research interests include storage and
operating systems. For more information, please
visit: https://www.inesctec.pt/en/people/ricardo-
goncalves-macedo.

RUI OLIVEIRA received the Ph.D. degree from
École Polytechnique Fédérale de Lausanne,
in 2000. He is currently an Associate Professor
in Habilitation with the Informatics Department,
University of Minho, a member of the Board
of Directors of INESC TEC, the Director of
the Minho Advanced Computing Centre, and
the Co-Director of the UT Austin Portugal
Program. His research interests include fault-
tolerant distributed agreement and epidemic

communication algorithms and in the conception, development, and
assessment of dependable database systems. For more information, please
visit: https://www.inesctec.pt/en/people/rui-carlos-oliveira.

JOÃO PAULO received the Ph.D. degree from
the Universities of Minho, Portugal, Aveiro,
and Porto, in 2015, under the MAP-i Doctoral
Program. He is currently an Assistant Professor
with the University of Minho, Portugal, and a
Senior Researcher with the HASLab, one of the
research units of INESC TEC and the University
of Minho. His research interests include dis-
tributed and operating systems with an emphasis
on storage and database solution’s scalability,

performance, and dependability. For more information, please visit:
https://www.inesctec.pt/en/people/joao-tiago-paulo.

VOLUME 11, 2023 110207

