
User-level Software-Defined
Storage Data Planes

Ricardo Macedo

MAP-i Doctoral Program in Computer Science

Under the supervision of
João Tiago Paulo

José Orlando Pereira

User-level Software-Defined Storage Data Planes

Data-centric systems

•Data-centric systems have become an integral part of
modern I/O stacks

•Good performance for these systems requires storage

optimizations

•Scheduling, caching, tiering, …

•Optimizations are implemented sub-optimally

2

User-level Software-Defined Storage Data Planes

•Data-centric systems have become an integral part of
modern I/O stacks

•Good performance for these systems requires storage

optimizations

•Scheduling, caching, tiering, …

•Optimizations are implemented sub-optimally

Data-centric systems

3

There is a better way to implement
I/O optimizations

User-level Software-Defined Storage Data Planes

Challenge #1

•I/O optimizations are single purposed

•Require deep understanding of the
system’s internal operation model

•Require profound system refactoring

•Have limited portability across systems

4

Tightly coupled optimizations Application

I/O Scheduling
SILK (ATC’19)

Caching
AC-Key (ATC’20)

Tiering
SpanDB (FAST’21)

Checksumming
Dong et al. (FAST’21)

Key-Value Store

File System

User-level Software-Defined Storage Data Planes

Challenge #1

5

Tightly coupled optimizations Application

I/O Scheduling
SILK (ATC’19)

Caching
AC-Key (ATC’20)

Tiering
SpanDB (FAST’21)

Checksumming
Dong et al. (FAST’21)

Key-Value Store

File System

SILK’s I/O Scheduler
•Reduces tail latency spikes in RocksDB

•Controls the interference between
foreground and background tasks

•Requires changing several modules,
such as background operation handlers,
internal queuing logic, and thread pools

•I/O optimizations are single purposed

•Require deep understanding of the
system’s internal operation model

•Require profound system refactoring

•Have limited portability across systems

User-level Software-Defined Storage Data Planes

Challenge #1

6

Application

I/O Scheduling Caching

Tiering Checksumming

Key-Value Store

File System

Dedicated I/O layer
I/O Scheduling Caching

Tiering Checksumming

•I/O optimizations should be disaggregated
from the internal logic of applications

•Moved to a dedicated I/O layer

•Generally applicable

•Portable across different scenarios

Decoupled optimizations

User-level Software-Defined Storage Data Planes

Challenge #2

•Decoupled optimizations lose granularity
and internal application knowledge

•I/O layers expose rigid interfaces

•Discard information that could be used to
classify and differentiate requests

7

Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

User-level Software-Defined Storage Data Planes

Challenge #2

8

Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation
•Workflow ID:

•Operation type:

•Operation size:

75476

read

4096

1

 Key-value store operation
•Workflow ID:

•Operation type:

•Operation size:

75482

write

4096

2

 Key-value store operation
•Workflow ID:

•Operation type:

•Operation size:

75490

read

4096

3

•Decoupled optimizations lose granularity
and internal application knowledge

•I/O layers expose rigid interfaces

•Discard information that could be used to
classify and differentiate requests

User-level Software-Defined Storage Data Planes

Challenge #2

9

Information propagation Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation
•Workflow ID:

•Operation type:

•Operation size:
•Context:

75476

read

4096

1

 Key-value store operation
•Workflow ID:

•Operation type:

•Operation size:
•Context:

75482

write

4096

2

 Key-value store operation
•Workflow ID:

•Operation type:

•Operation size:
•Context:

75490

read

4096

3

•Application-level information must be
propagated throughout layers

•Decoupled optimizations can provide the
same level of control and performance

foreground task

flush

compaction L1-L2

User-level Software-Defined Storage Data Planes 10

File System

Application

Key-Value Store
•Optimizations are oblivious of other

systems

•Lack of coordination

•Conflicting optimizations, I/O
contention, and performance variation

Partial visibility

Challenge #3

Application

DL Framework

Application

Database

I/O optimization I/O optimization I/O optimization

! Note: the storage backend can either be local (e.g., ext4,
xfs) or distributed (e.g., Lustre, GPFS), as well as the I/O
layers on top

User-level Software-Defined Storage Data Planes 11

•Optimizations should be aware of the
surrounding system stack

•Operate in coordination

•Holistic control of I/O workflows and
shared resources

Global I/O control

Challenge #3

! Note: the storage backend can either be local (e.g., ext4,
xfs) or distributed (e.g., Lustre, GPFS), as well as the I/O
layers on top

File System

Application

Key-Value Store

Application

DL Framework

Application

Database

I/O optimization I/O optimization I/O optimization

User-level Software-Defined Storage Data Planes 12

Redefine how I/O optimizations are implemented

• Decoupled from the targeted system, minimizing intrusiveness

• Perform coordinated decisions over shared resources

• Impose minimal performance overhead

• Programmable and adaptable to different requirements and storage objectives

Objectives

User-level Software-Defined Storage Data Planes 13

Software-Defined Storage
•Software-Defined Storage (SDS) decouples I/O mechanisms from

the policies that govern them

•Control plane acts as a global coordinator that enforces policies
holistically

•QoS provisioning, performance control, resource fairness

•Data plane is a multi-stage component that implements custom I/O
logic over requests

•I/O schedulers, encryption, compression, and caching

File System

Application Application Application

Key-Value Store DL Framework Database

Data Plane

Control
Plane

P P

P

User-level Software-Defined Storage Data Planes 14

Software-Defined Storage
•Software-Defined Storage (SDS) decouples I/O mechanisms from

the policies that govern them

•Control plane acts as a global coordinator that enforces policies
holistically

•QoS provisioning, performance control, resource fairness

•Data plane is a multi-stage component that implements custom I/O
logic over requests

•I/O schedulers, encryption, compression, and caching

File System

Application Application Application

Key-Value Store DL Framework Database

Data Plane

Control
Plane

P P

P

Macedo et al. “A Survey and Classification of Software-Defined Storage Systems”. ACM Computing Surveys, 2020.

Survey and classification of SDS systems
•Targeted for specific I/O layers or storage objectives (e.g., virtualization, file system, resource management)

•Tightly coupled design, driven by the architecture and specificities of the context they are applied

•Existing SDS systems follow a similar path as traditionally implemented I/O optimizations

User-level Software-Defined Storage Data Planes 15

• Software-Defined Storage survey
• Systematization of knowledge, taxonomy, and classification of existing SDS work

• PAIO data plane framework
• Enables building user-level, portable, and generally applicable I/O optimizations

• Data plane stages built with PAIO
• Tail latency control in LSM-based key-value stores

• Per-application bandwidth control under shared storage environments

• Metadata control in parallel file systems

Contributions

User-level Software-Defined Storage Data Planes 16

• User-level framework for building portable and generally applicable I/O optimizations

• Follows a Software-Defined Storage design

• I/O optimizations are implemented outside applications as data plane stages

• Stages are controlled through a control plane for coordinated access to resources

•Enables the propagation of application-level information through context propagation

•Porting I/O layers to use PAIO requires none to minor code changes

PAIO: Programmable and Adaptable I/O Workflows

Macedo et al. “PAIO: General, Portable I/O Optimizations With Minor Application Modifications”. USENIX FAST, 2022.

User-level Software-Defined Storage Data Planes

Ch
an

ne
l 2

Ch
an

ne
l 1

Ch
an

ne
l 3

Ch
an

ne
l 4

I/O enforcement

I/O differentiation

Control
Plane

P1

P2

P3

Monitoring flows

Rules

I/O workflows

PAIO Stage
App1

Stage

App2 App3

Stage

File System

Stage

PAIO design

17

Global visibility

User-level

Information
propagation

Actual I/O
mechanisms

User-level Software-Defined Storage Data Planes

Ch
an

ne
l 2

Ch
an

ne
l 1

Ch
an

ne
l 3

Ch
an

ne
l 4

I/O enforcement

I/O differentiation

Control
Plane

P1

P2

P3

Monitoring flows

Rules

I/O workflows

PAIO Stage
App1

Stage

App2 App3

Stage

File System

Stage

PAIO design

18

Global visibility

User-level

Information
propagation

Actual I/O
mechanisms

User-level Software-Defined Storage Data Planes

Ch
an

ne
l 2

Ch
an

ne
l 1

Ch
an

ne
l 3

Ch
an

ne
l 4

I/O enforcement

I/O differentiation

Control
Plane

P1

P2

P3

Monitoring flows

Rules

I/O workflows

PAIO Stage
App1

Stage

App2 App3

Stage

File System

Stage

PAIO design

19

Global visibility

User-level

Information
propagation

Actual I/O
mechanisms

User-level Software-Defined Storage Data Planes

Ch
an

ne
l 2

Ch
an

ne
l 1

Ch
an

ne
l 3

Ch
an

ne
l 4

I/O enforcement

I/O differentiation

Control
Plane

P1

P2

P3

Monitoring flows

Rules

I/O workflows

PAIO Stage
App1

Stage

App2 App3

Stage

File System

Stage

PAIO design

20

Global visibility

User-level

Information
propagation

Actual I/O
mechanisms

User-level Software-Defined Storage Data Planes

Ch
an

ne
l 2

Ch
an

ne
l 1

Ch
an

ne
l 3

Ch
an

ne
l 4

I/O enforcement

I/O differentiation

Control
Plane

P1

P2

P3

Monitoring flows

Rules

I/O workflows

PAIO Stage
App1

Stage

App2 App3

Stage

File System

Stage

PAIO design

21

Global visibility

User-level

Information
propagation

Actual I/O
mechanisms

User-level Software-Defined Storage Data Planes

PAIO design

•Context propagation

•I/O differentiation

•I/O enforcement

22

Policy: limit the rate of RocksDB’s flush operations to X MiB/s

File System

RocksDB

PAIO Stage

Ch
an

ne
l 2 C
on

tr
ol

 A
PI

foreground flows

compaction flows flush flows token channel

flush channel1
foreground +
compactions

channel2

select_channel (ctx)

... ...

I/O differentiation

PAIO Stage

SQ

Ch
an

ne
l 1

SQ

select_object (ctx)

obj_enf

Application

DR
L

N
o
o
p

User-level Software-Defined Storage Data Planes

I/O differentiation

23

Identify the origin of POSIX operations (i.e.,
foreground, compaction, or flush operations)

File System

RocksDB

PAIO Stage

Ch
an

ne
l 2 C
on

tr
ol

 A
PI

foreground flows

compaction flows flush flows token channel

flush channel1
foreground +
compactions

channel2

select_channel (ctx)

... ...

I/O differentiation

PAIO Stage

SQ

Ch
an

ne
l 1

SQ

select_object (ctx)

obj_enf

Application

DR
L

N
o
o
p

Context propagation:
Instrumentation + propagation phases

User-level Software-Defined Storage Data Planes

File System

RocksDB

PAIO Stage

Ch
an

ne
l 2 C
on

tr
ol

 A
PI

foreground flows

compaction flows flush flows token channel

flush channel1
foreground +
compactions

channel2

select_channel (ctx)

... ...

I/O differentiation

PAIO Stage

SQ

Ch
an

ne
l 1

SQ

select_object (ctx)

obj_enf

Application

DR
L

N
o
o
p

I/O differentiation

24

Context {
workflow-id : 75756,
type : write,
context : flush,
size : 4096,
…

}

Context propagation:
Propagation + classification phases

User-level Software-Defined Storage Data Planes

File System

RocksDB

PAIO Stage

Ch
an

ne
l 2 C
on

tr
ol

 A
PI

foreground flows

compaction flows flush flows token channel

flush channel1
foreground +
compactions

channel2

select_channel (ctx)

... ...

I/O differentiation

PAIO Stage

SQ

Ch
an

ne
l 1

SQ

select_object (ctx)

obj_enf

Application

DR
L

N
o
o
p

I/O differentiation

25

Context {
workflow-id : 75756,
type : write,
context : flush,
size : 4096,
…

}

User-level Software-Defined Storage Data Planes

I/O enforcement

26

PAIO currently supports Noop (passthrough)
and DRL (token-bucket) enforcement objects

File System

RocksDB

PAIO Stage

Ch
an

ne
l 2 C
on

tr
ol

 A
PI

foreground flows

compaction flows flush flows token channel

flush channel1
foreground +
compactions

channel2

select_channel (ctx)

... ...

I/O differentiation

PAIO Stage

SQ

Ch
an

ne
l 1

SQ

select_object (ctx)

obj_enf

Application

DR
L

N
o
o
p

User-level Software-Defined Storage Data Planes

I/O enforcement

27

Requests return to their
original I/O path

File System

RocksDB

PAIO Stage

Ch
an

ne
l 2 C
on

tr
ol

 A
PI

foreground flows

compaction flows flush flows token channel

flush channel1
foreground +
compactions

channel2

select_channel (ctx)

... ...

I/O differentiation

PAIO Stage

SQ

Ch
an

ne
l 1

SQ

select_object (ctx)

obj_enf

Application

DR
L

N
o
o
p

User-level Software-Defined Storage Data Planes

Data plane stages built with PAIO

28

•Per-application bandwidth control under shared storage environments

• Applied over multiple TensorFlow instances in the ABCI (AIST) supercomputer

•Tail latency control in Log-Structured Merge-tree key-value stores*

• Applied over RocksDB, a production-ready key-value store from Meta

• Metadata control in Parallel File Systems*

• Applied over metadata-aggressive jobs in Frontera (TACC) and ABCI supercomputers

* Discussed in this presentation.

User-level Software-Defined Storage Data Planes

Tail latency control in LSM-based key-value stores
RocksDB
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold

SILK
• I/O scheduler

• Allocates bandwidth for internal operations when client load is low

• Prioritizes flushes and low level compactions

• Preempts high level compactions with low level ones

• Requires changing several core modules made of thousands of LoC (≈335K LoC)

29

User-level Software-Defined Storage Data Planes

RocksDB
• Interference between foreground and background tasks generates high latency spikes

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold

SILK
• I/O scheduler

• Allocates bandwidth for internal operations when client load is low
• Prioritizes flushes and low level compactions
• Preempts high level compactions with low level ones

• Requires changing several core modules made of thousands of LoC (≈335K LoC)

PAIO
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows

• Integrating PAIO in RocksDB only required adding 85 LoC

• Control plane provides a SILK-based I/O scheduling algorithm
30

Tail latency control in LSM-based key-value stores

User-level Software-Defined Storage Data Planes

Evaluation

31

Mixture workload

Throughput: high variability due to constant flushes and
compactions

99th latency: high tail latency with peaks with an average
range between 3 and 15 ms

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

RocksDB

5
10
15
20

La
te

nc
y

(m
s) RocksDB

System configuration and workload
•8 client threads and 8 background threads
•Memory limited to 1GB and I/O BW to 200MB/s
•Bursty workload with peaks and valleys
•db_bench with YCSB A (50% read 50% write)

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

SILK

5
10
15
20

La
te

nc
y

(m
s) SILK

10

20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)

PAIO

1200

Throughput (higher is better) Tail latency (lower is better)

User-level Software-Defined Storage Data Planes

Evaluation

32

Mixture workload

Throughput: suffers periodic throughput drops due to
accumulated backlog

99th latency: low and sustained tail latency

System configuration and workload
•8 client threads and 8 background threads
•Memory limited to 1GB and I/O BW to 200MB/s
•Bursty workload with peaks and valleys
•db_bench with YCSB A (50% read 50% write)

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

SILK

5
10
15
20

La
te

nc
y

(m
s) SILK

10

20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)

PAIO

1200

PAIO and SILK observe a 4x decrease in absolute tail latency

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

RocksDB

5
10
15
20

La
te

nc
y

(m
s) RocksDB

Throughput (higher is better) Tail latency (lower is better)

User-level Software-Defined Storage Data Planes

Evaluation

33

Mixture workload

PAIO and SILK observe a 4x decrease in absolute tail latency

Throughput: suffers periodic throughput drops due to
accumulated backlog

99th latency: low and sustained tail latency

System configuration and workload
•8 client threads and 8 background threads
•Memory limited to 1GB and I/O BW to 200MB/s
•Bursty workload with peaks and valleys
•db_bench with YCSB A (50% read 50% write)

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

SILK

5
10
15
20

La
te

nc
y

(m
s) SILK

10

20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)

PAIO

1200

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

RocksDB

5
10
15
20

La
te

nc
y

(m
s) RocksDB

Throughput (higher is better) Tail latency (lower is better)

By propagating application-level information to the stage, PAIO can enable
similar control and performance as system-specific optimizations

User-level Software-Defined Storage Data Planes

Metadata control in parallel file systems

34

• HPC workloads are no longer compute-bound and write-dominated

• Modern workloads are read-dominated and with massive bursts of metadata operations

• Lustre-like parallel file systems (PFS) provide a centralized metadata management service

• Multiple jobs competing over shared metadata resources

• Severe I/O contention

• Overall performance degradation

User-level Software-Defined Storage Data Planes

P3
P1

P2

global
controller

jobN

App1
PADLL stage

compute node 2

PFS clientlo
ca

l c
tr

l

compute node 1
job1

App1
PADLL stage

PFS client

AppN
PADLL stage

PFS client
compute node N

lo
ca

l c
tr

l

lo
ca

l c
tr

l

job2

App2
PADLL stage

PFS client
compute node 3

lo
ca

l c
tr

l

35

Metadata control in parallel file systems

• PADLL, an application and file system agnostic storage middleware that enables QoS of metadata
workflows in HPC storage

• Proactively and holistically controls the rate at
which POSIX requests are submitted to the PFS

• Data plane actuates at the compute node level

• Control plane follows a hierarchical organization

• New max-min fair share algorithm that prevents
resource over-provisioning under volatile workloads

• PADLL does not require any code changes

Macedo et al. “Protecting Metadata Servers From Harm Through Application-level I/O Control”. IEEE Cluster @ REX-IO, 2022.
Macedo et al. Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control”. 23rd IEEE/ACM CCGrid, 2023. In submission.

User-level Software-Defined Storage Data Planes

P3
P1

P2

global
controller

jobN

App1
PADLL stage

compute node 2

PFS clientlo
ca

l c
tr

l

compute node 1
job1

App1
PADLL stage

PFS client

AppN
PADLL stage

PFS client
compute node N

lo
ca

l c
tr

l

lo
ca

l c
tr

l

job2

App2
PADLL stage

PFS client
compute node 3

lo
ca

l c
tr

l

36

Metadata control in parallel file systems

• PADLL, an application and file system agnostic storage middleware that enables QoS of metadata
workflows in HPC storage

• Proactively and holistically controls the rate at
which POSIX requests are submitted to the PFS

• Data plane actuates at the compute node level

• Control plane follows a hierarchical organization

• New max-min fair share algorithm that prevents
resource over-provisioning under volatile workloads

• PADLL does not require any code changes

Macedo et al. “Protecting Metadata Servers From Harm Through Application-level I/O Control”. IEEE Cluster @ REX-IO, 2022.
Macedo et al. Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control”. 23rd IEEE/ACM CCGrid, 2023. In submission.

User-level Software-Defined Storage Data Planes

P3
P1

P2

global
controller

jobN

App1
PADLL stage

compute node 2

PFS clientlo
ca

l c
tr

l

compute node 1
job1

App1
PADLL stage

PFS client

AppN
PADLL stage

PFS client
compute node N

lo
ca

l c
tr

l

lo
ca

l c
tr

l

job2

App2
PADLL stage

PFS client
compute node 3

lo
ca

l c
tr

l

37

Metadata control in parallel file systems

• PADLL, an application and file system agnostic storage middleware that enables QoS of metadata
workflows in HPC storage

• Proactively and holistically controls the rate at
which POSIX requests are submitted to the PFS

• Data plane actuates at the compute node level

• Control plane follows a hierarchical organization

• New max-min fair share algorithm that prevents
resource over-provisioning under volatile workloads

• PADLL does not require any code changes

Macedo et al. “Protecting Metadata Servers From Harm Through Application-level I/O Control”. IEEE Cluster @ REX-IO, 2022.
Macedo et al. Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control”. 23rd IEEE/ACM CCGrid, 2023. In submission.

User-level Software-Defined Storage Data Planes 38

Evaluation
Metadata-aggressive jobs

• Objective
• Limit overall metadata load in the PFS, while assigning different I/O priorities to jobs

• Experimental environment
• Multi-job QoS control in the Frontera supercomputer

• Trace replayer with metadata traces from the ABCI production cluster

• Setups
• Baseline

• Proportional Sharing (state-of-the-art QoS algorithm)

• Proportional Sharing Without False Resource Allocation (new QoS algorithm)

User-level Software-Defined Storage Data Planes

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

39

Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s
• New job is added every 3 minutes
• Baseline execution time is 36 minutes (per job)
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload
Peaks reaching over 600 KOps/s

Job1
starts

Job2
starts

Job3
starts

Job4
starts

Job1
ends

Job2
ends

Job3
ends

Job4
ends

All jobs are executing

PFS QoS objective
(maximum

metadata rate)

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Volatile and bursty workload
Peaks reaching over 600 KOps/s

User-level Software-Defined Storage Data Planes

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

40

Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s
• New job is added every 3 minutes
• Baseline execution time is 36 minutes (per job)
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload
Peaks reaching over 600 KOps/s

Job1
starts

Job2
starts

Job3
starts

Job4
starts

Job1
ends

Job2
ends

Job3
ends

Job4
ends

All jobs are executing

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

Th
ro

ug
hp

ut
 (K

O
ps

/s
)Proportional sharing: enforce per-

job metadata rate reservations, while
assigning leftover rate when available

✓Maximum metadata limit is respected, eliminating burstiness
✓Each reservation of metadata is respected
✓Leftover rate is assigned to jobs whenever available

Executes 5 minutes longer than Baseline

User-level Software-Defined Storage Data Planes

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

41

Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s
• New job is added every 3 minutes
• Baseline execution time is 36 minutes (per job)
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload
Peaks reaching over 600 KOps/s

Job1
starts

Job2
starts

Job3
starts

Job4
starts

Job1
ends

Job2
ends

Job3
ends

Job4
ends

All jobs are executing

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

Th
ro

ug
hp

ut
 (K

O
ps

/s
)Proportional sharing: enforce per-

job metadata rate reservations, while
assigning leftover rate when available

✓Maximum metadata limit is respected, eliminating burstiness
✓Each reservation of metadata is respected
✓Leftover rate is assigned to jobs whenever available

Executes 5 minutes longer than Baseline

Accumulated backlog!

Long periods of over-provisioning
(resources assigned but not used)

User-level Software-Defined Storage Data Planes

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

42

Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s
• New job is added every 3 minutes
• Baseline execution time is 36 minutes (per job)
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload
Peaks reaching over 600 KOps/s

Job1
starts

Job2
starts

Job3
starts

Job4
starts

Job1
ends

Job2
ends

Job3
ends

Job4
ends

All jobs are executing

0
75

150
225
300

0 6 12 18 24 30 36 42 46 50

Job1

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

Time (minutes)

Baseline

1
2

3
4

5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 64

Job2

Uniform

1
2

3 4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 77

Job3

Priority

1 2
3

4 5
6

7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

Job4

Prop. sharing

1
2 3

4 5 6
7

0
60

120
180
240

0 6 12 18 24 30 36 42 46 50

PSFA

1
2

3 4 5

6
7

Th
ro

ug
hp

ut
 (K

O
ps

/s
)

✓Maximum metadata limit is respected, eliminating burstiness
✓Each reservation of metadata is respected
✓Unused I/O resources are reassigned, preventing over-provisioning
✓All jobs finish under the same time as Baseline

PSFA: enforce per-job metadata rate
reservations based on the actual I/O usage

User-level Software-Defined Storage Data Planes

Summary

43

• Survey and classification of SDS systems
• Systematization of knowledge and taxonomy of existing SDS solutions

• Uncovers open research challenges in the field

• PAIO, a novel SDS system that enables building complex I/O optimizations
• Decoupled from the targeted system

• Perform coordinated control decisions over shared resources

• Programmable and adaptable

• Data plane stages built with PAIO
• Reimplement complex I/O optimizations that achieve similar performance as system-specific ones

• New optimizations that address unsolved challenges present in modern I/O infrastructures

• Currently working with leading HPC centers in the integration of PAIO and PADLL in production

User-level Software-Defined Storage Data Planes

Publications

44

• R. Macedo, Y. Tanimura, J. Haga, V. Chidambaram, J. Pereira, J. Paulo. “PAIO: General, Portable I/O Optimizations With Minor Application
Modifications”. 20th USENIX Conference on File and Storage Technologies, 2022.

• R. Macedo, J. Paulo, J. Pereira, A. Bessani. “A Survey and Classification of Software-Defined Storage Systems”. ACM Computing Surveys 53, 3 (48),
2020.

• R. Macedo, A. Faria, J. Paulo, J. Pereira. “A Case for Dynamically Programmable Storage Background Tasks”. 38th International Symposium on
Reliable Distributed Systems Workshops, 2019.

• R. Macedo, C. Correia, M. Dantas, C. Brito, W. Xu, Y. Tanimura, J. Haga, J. Paulo. “The Case for Storage Optimization Decoupling in Deep Learning
Frameworks”. IEEE Cluster @ REX-IO Workshop, 2021.

• R. Macedo, M. Miranda, Y. Tanimura, J. Haga, A. Ruhela, S. Harrell, R. Evans, J. Paulo. “Protecting Metadata Servers From Harm Through Application-
level I/O Control”. IEEE Cluster @ REX-IO Workshop, 2022.

• R. Macedo, M. Miranda, Y. Tanimura, J. Haga, A. Ruhela, S. Harrell, R. Evans, J. Pereira, J. Paulo. “Taming Metadata-intensive HPC Jobs Through
Dynamic, Application-agnostic QoS Control”. 23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, 2023. In submission.

• M. Dantas, D. Leitão, P. Cui, R. Macedo, X. Liu, W. Xu, J. Paulo. “Accelerating Deep Learning Training Through Transparent Storage Tiering”. 22nd
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, 2022.

• A. Faria, R. Macedo, J. Pereira, J. Paulo. “BDUS: Implementing Block Devices in User Space”. 14th ACM International System and Storage Conference,
2021. Best paper runner-up.

• M. Dantas, D. Leitão, C. Correia, R. Macedo, W. Xu, J. Paulo. “Monarch: Hierarchical Storage Management for Deep Learning Frameworks”. IEEE
Cluster @ REX-IO Workshop, 2021.

• A. Faria, R. Macedo, J. Paulo. “Pods-as-Volumes: Effortlessly Integrating Storage Systems and Middleware into Kubernetes”. ACM/IFIP Middleware
@ WoC, 2021.

• T. Esteves, R. Macedo, A. Faria, B. Portela, J. Paulo, J. Pereira, D. Harnik. “TrustFS: An SGX-enabled Stackable File System Framework”. 38th
International Symposium on Reliable Distributed Systems Workshops, 2019.

Core publications

Complementary publications

