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User-level Software-Defined Storage Data Planes

Data-centric systems

•Data-centric systems have become an integral part of 
modern I/O stacks 

•Good performance for these systems requires storage 

optimizations 

•Scheduling, caching, tiering, … 

•Optimizations are implemented sub-optimally

2
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•Data-centric systems have become an integral part of 
modern I/O stacks 

•Good performance for these systems requires storage 

optimizations 

•Scheduling, caching, tiering, … 

•Optimizations are implemented sub-optimally

Data-centric systems
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There is a better way to implement 
I/O optimizations
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Challenge #1

•I/O optimizations are single purposed 

•Require deep understanding of the 
system’s internal operation model 

•Require profound system refactoring 

•Have limited portability across systems

4

Tightly coupled optimizations Application

I/O Scheduling 
SILK (ATC’19)

Caching 
AC-Key (ATC’20)

Tiering 
SpanDB (FAST’21)

Checksumming 
Dong et al. (FAST’21)

Key-Value Store

File System



User-level Software-Defined Storage Data Planes

Challenge #1
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Tightly coupled optimizations Application

I/O Scheduling 
SILK (ATC’19)

Caching 
AC-Key (ATC’20)

Tiering 
SpanDB (FAST’21)

Checksumming 
Dong et al. (FAST’21)

Key-Value Store

File System

SILK’s I/O Scheduler 
•Reduces tail latency spikes in RocksDB 

•Controls the interference between 
foreground and background tasks 

•Requires changing several modules, 
such as background operation handlers, 
internal queuing logic, and thread pools

•I/O optimizations are single purposed 

•Require deep understanding of the 
system’s internal operation model 

•Require profound system refactoring 

•Have limited portability across systems
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Challenge #1
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Application

I/O Scheduling Caching

Tiering Checksumming

Key-Value Store

File System

Dedicated I/O layer
I/O Scheduling Caching

Tiering Checksumming

•I/O optimizations should be disaggregated 
from the internal logic of applications 

•Moved to a dedicated I/O layer 

•Generally applicable 

•Portable across different scenarios

Decoupled optimizations
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Challenge #2

•Decoupled optimizations lose granularity 
and internal application knowledge 

•I/O layers expose rigid interfaces 

•Discard information that could be used to 
classify and differentiate requests
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Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows
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Challenge #2
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Rigid interfaces
Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation 
•Workflow ID: 

•Operation type: 

•Operation size:

75476

read

4096

1

 Key-value store operation 
•Workflow ID: 

•Operation type: 

•Operation size:

75482

write

4096

2

 Key-value store operation 
•Workflow ID: 

•Operation type: 

•Operation size:

75490

read

4096

3

•Decoupled optimizations lose granularity 
and internal application knowledge 

•I/O layers expose rigid interfaces 

•Discard information that could be used to 
classify and differentiate requests
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Challenge #2
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Information propagation Application

Key-Value Store

File System

foreground flows

compaction flows flush flows

 Key-value store operation 
•Workflow ID: 

•Operation type: 

•Operation size: 
•Context:

75476

read

4096

1

 Key-value store operation 
•Workflow ID: 

•Operation type: 

•Operation size: 
•Context: 

75482

write

4096

2

 Key-value store operation 
•Workflow ID: 

•Operation type: 

•Operation size: 
•Context:

75490

read

4096

3

•Application-level information must be 
propagated throughout layers 

•Decoupled optimizations can provide the 
same level of control and performance

foreground task

flush

compaction L1-L2
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File System

Application

Key-Value Store
•Optimizations are oblivious of other 

systems 

•Lack of coordination 

•Conflicting optimizations, I/O 
contention, and performance variation

Partial visibility

Challenge #3

Application

DL Framework

Application

Database

I/O optimization I/O optimization I/O optimization

! Note: the storage backend can either be local (e.g., ext4, 
xfs) or distributed (e.g., Lustre, GPFS), as well as the I/O 
layers on top
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•Optimizations should be aware of the 
surrounding system stack 

•Operate in coordination 

•Holistic control of I/O workflows and 
shared resources

Global I/O control

Challenge #3

! Note: the storage backend can either be local (e.g., ext4, 
xfs) or distributed (e.g., Lustre, GPFS), as well as the I/O 
layers on top

File System

Application

Key-Value Store

Application

DL Framework

Application

Database

I/O optimization I/O optimization I/O optimization
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Redefine how I/O optimizations are implemented

• Decoupled from the targeted system, minimizing intrusiveness 

• Perform coordinated decisions over shared resources 

• Impose minimal performance overhead 

• Programmable and adaptable to different requirements and storage objectives

Objectives
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Software-Defined Storage
•Software-Defined Storage (SDS) decouples I/O mechanisms from 

the policies that govern them 

•Control plane acts as a global coordinator that enforces policies 
holistically 

•QoS provisioning, performance control, resource fairness 

•Data plane is a multi-stage component that implements custom I/O 
logic over requests 

•I/O schedulers, encryption, compression, and caching

File System

Application Application Application

Key-Value Store DL Framework Database

Data Plane

Control 
Plane

P P

P
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Software-Defined Storage
•Software-Defined Storage (SDS) decouples I/O mechanisms from 

the policies that govern them 

•Control plane acts as a global coordinator that enforces policies 
holistically 

•QoS provisioning, performance control, resource fairness 

•Data plane is a multi-stage component that implements custom I/O 
logic over requests 

•I/O schedulers, encryption, compression, and caching

File System

Application Application Application

Key-Value Store DL Framework Database

Data Plane

Control 
Plane

P P

P

Macedo et al. “A Survey and Classification of Software-Defined Storage Systems”. ACM Computing Surveys, 2020.

Survey and classification of SDS systems 
•Targeted for specific I/O layers or storage objectives (e.g., virtualization, file system, resource management) 

•Tightly coupled design, driven by the architecture and specificities of the context they are applied 

•Existing SDS systems follow a similar path as traditionally implemented I/O optimizations
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• Software-Defined Storage survey 
• Systematization of knowledge, taxonomy, and classification of existing SDS work 

• PAIO data plane framework 
• Enables building user-level, portable, and generally applicable I/O optimizations 

• Data plane stages built with PAIO 
• Tail latency control in LSM-based key-value stores 

• Per-application bandwidth control under shared storage environments 

• Metadata control in parallel file systems

Contributions
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• User-level framework for building portable and generally applicable I/O optimizations 

• Follows a Software-Defined Storage design 

• I/O optimizations are implemented outside applications as data plane stages 

• Stages are controlled through a control plane for coordinated access to resources 

•Enables the propagation of application-level information through context propagation 

•Porting I/O layers to use PAIO requires none to minor code changes

PAIO: Programmable and Adaptable I/O Workflows

Macedo et al. “PAIO: General, Portable I/O Optimizations With Minor Application Modifications”. USENIX FAST, 2022.
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Global visibility

User-level

Information  
propagation

Actual I/O  
mechanisms
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PAIO design

•Context propagation 

•I/O differentiation 

•I/O enforcement
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Policy: limit the rate of RocksDB’s flush operations to X MiB/s
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I/O differentiation
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Identify the origin of POSIX operations (i.e., 
foreground, compaction, or flush operations)

File System

RocksDB

PAIO Stage

Ch
an

ne
l 2 C
on

tr
ol

 A
PI

foreground flows

compaction flows flush flows token channel

flush channel1
foreground +
compactions

channel2

select_channel (ctx)

... ...

I/O differentiation

PAIO Stage

SQ

Ch
an

ne
l 1

SQ

select_object (ctx)

obj_enf

Application

DR
L

N
o
o
p

Context propagation:  
Instrumentation + propagation phases
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Context { 
workflow-id : 75756, 
type        : write, 
context     : flush, 
size        : 4096, 
… 

}

Context propagation:  
Propagation + classification phases
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Context { 
workflow-id : 75756, 
type        : write, 
context     : flush, 
size        : 4096, 
… 

}
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I/O enforcement
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PAIO currently supports Noop (passthrough) 
and DRL (token-bucket) enforcement objects
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I/O enforcement
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Requests return to their 
original I/O path
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Data plane stages built with PAIO

28

•Per-application bandwidth control under shared storage environments 

• Applied over multiple TensorFlow instances in the ABCI (AIST) supercomputer 

•Tail latency control in Log-Structured Merge-tree key-value stores* 

• Applied over RocksDB, a production-ready key-value store from Meta 

• Metadata control in Parallel File Systems* 

• Applied over metadata-aggressive jobs in Frontera (TACC) and ABCI supercomputers

* Discussed in this presentation.
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Tail latency control in LSM-based key-value stores
RocksDB 
• Interference between foreground and background tasks generates high latency spikes 

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold 

SILK 
• I/O scheduler 

• Allocates bandwidth for internal operations when client load is low 

• Prioritizes flushes and low level compactions 

• Preempts high level compactions with low level ones 

• Requires changing several core modules made of thousands of LoC (≈335K LoC)

29
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RocksDB 
• Interference between foreground and background tasks generates high latency spikes 

• Latency spikes occur due to L0-L1 compactions and flushes being slow or on hold 

SILK 
• I/O scheduler 

• Allocates bandwidth for internal operations when client load is low 
• Prioritizes flushes and low level compactions 
• Preempts high level compactions with low level ones 

• Requires changing several core modules made of thousands of LoC (≈335K LoC) 

PAIO 
• Stage provides the I/O mechanisms for prioritizing and rate limiting background flows 

• Integrating PAIO in RocksDB only required adding 85 LoC 

• Control plane provides a SILK-based I/O scheduling algorithm
30

Tail latency control in LSM-based key-value stores
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Evaluation

31

Mixture workload

Throughput: high variability due to constant flushes and 
compactions

99th latency: high tail latency with peaks with an average 
range between 3 and 15 ms
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System configuration and workload
•8 client threads and 8 background threads 
•Memory limited to 1GB and I/O BW to 200MB/s 
•Bursty workload with peaks and valleys 
•db_bench with YCSB A (50% read 50% write)
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Evaluation
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Mixture workload

Throughput: suffers periodic throughput drops due to 
accumulated backlog

99th latency: low and sustained tail latency

System configuration and workload
•8 client threads and 8 background threads 
•Memory limited to 1GB and I/O BW to 200MB/s 
•Bursty workload with peaks and valleys 
•db_bench with YCSB A (50% read 50% write)
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PAIO and SILK observe a 4x decrease in absolute tail latency

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

RocksDB

5
10
15
20

La
te

nc
y

(m
s) RocksDB

Throughput (higher is better) Tail latency (lower is better)



User-level Software-Defined Storage Data Planes

Evaluation
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Mixture workload

PAIO and SILK observe a 4x decrease in absolute tail latency

Throughput: suffers periodic throughput drops due to 
accumulated backlog

99th latency: low and sustained tail latency

System configuration and workload
•8 client threads and 8 background threads 
•Memory limited to 1GB and I/O BW to 200MB/s 
•Bursty workload with peaks and valleys 
•db_bench with YCSB A (50% read 50% write)

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

SILK

5
10
15
20

La
te

nc
y

(m
s) SILK

10

20

0 300 600 900 1200

Th
ro

ug
hp

ut
(K

O
ps

/s
)

Time (s)

PAIO

5
10
15
20

0 300 600 900 1200

La
te

nc
y

(m
s)

Time (s)

PAIO

1200

10

20

Th
ro

ug
hp

ut
(K

O
ps

/s
)

RocksDB

5
10
15
20

La
te

nc
y

(m
s) RocksDB

Throughput (higher is better) Tail latency (lower is better)

By propagating application-level information to the stage, PAIO can enable 
similar control and performance as system-specific optimizations



User-level Software-Defined Storage Data Planes

Metadata control in parallel file systems

34

• HPC workloads are no longer compute-bound and write-dominated 

• Modern workloads are read-dominated and with massive bursts of metadata operations 

• Lustre-like parallel file systems (PFS) provide a centralized metadata management service 

• Multiple jobs competing over shared metadata resources 

• Severe I/O contention 

• Overall performance degradation
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Metadata control in parallel file systems

• PADLL, an application and file system agnostic storage middleware that enables QoS of metadata 
workflows in HPC storage

• Proactively and holistically controls the rate at 
which POSIX requests are submitted to the PFS 

• Data plane actuates at the compute node level 

• Control plane follows a hierarchical organization 

• New max-min fair share algorithm that prevents 
resource over-provisioning under volatile workloads 

• PADLL does not require any code changes

Macedo et al. “Protecting Metadata Servers From Harm Through Application-level I/O Control”. IEEE Cluster @ REX-IO, 2022. 
Macedo et al. Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control”. 23rd IEEE/ACM CCGrid, 2023. In submission.
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Metadata control in parallel file systems

• PADLL, an application and file system agnostic storage middleware that enables QoS of metadata 
workflows in HPC storage

• Proactively and holistically controls the rate at 
which POSIX requests are submitted to the PFS 

• Data plane actuates at the compute node level 

• Control plane follows a hierarchical organization 

• New max-min fair share algorithm that prevents 
resource over-provisioning under volatile workloads 

• PADLL does not require any code changes

Macedo et al. “Protecting Metadata Servers From Harm Through Application-level I/O Control”. IEEE Cluster @ REX-IO, 2022. 
Macedo et al. Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control”. 23rd IEEE/ACM CCGrid, 2023. In submission.
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Metadata control in parallel file systems

• PADLL, an application and file system agnostic storage middleware that enables QoS of metadata 
workflows in HPC storage

• Proactively and holistically controls the rate at 
which POSIX requests are submitted to the PFS 

• Data plane actuates at the compute node level 

• Control plane follows a hierarchical organization 

• New max-min fair share algorithm that prevents 
resource over-provisioning under volatile workloads 

• PADLL does not require any code changes

Macedo et al. “Protecting Metadata Servers From Harm Through Application-level I/O Control”. IEEE Cluster @ REX-IO, 2022. 
Macedo et al. Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control”. 23rd IEEE/ACM CCGrid, 2023. In submission.
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Evaluation
Metadata-aggressive jobs

• Objective 
• Limit overall metadata load in the PFS, while assigning different I/O priorities to jobs 

• Experimental environment 
• Multi-job QoS control in the Frontera supercomputer 

• Trace replayer with metadata traces from the ABCI production cluster 

• Setups 
• Baseline 

• Proportional Sharing (state-of-the-art QoS algorithm) 

• Proportional Sharing Without False Resource Allocation (new QoS algorithm)
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Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s 
• New job is added every 3 minutes 
• Baseline execution time is 36 minutes (per job) 
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload 
Peaks reaching over 600 KOps/s
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Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s 
• New job is added every 3 minutes 
• Baseline execution time is 36 minutes (per job) 
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload 
Peaks reaching over 600 KOps/s

Job1 
starts

Job2 
starts

Job3 
starts

Job4 
starts

Job1 
ends

Job2 
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Job4 
ends

All jobs are executing
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job metadata rate reservations, while 
assigning leftover rate when available

✓Maximum metadata limit is respected, eliminating burstiness 
✓Each reservation of metadata is respected 
✓Leftover rate is assigned to jobs whenever available 

Executes 5 minutes longer than Baseline
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Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s 
• New job is added every 3 minutes 
• Baseline execution time is 36 minutes (per job) 
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload 
Peaks reaching over 600 KOps/s

Job1 
starts

Job2 
starts

Job3 
starts

Job4 
starts

Job1 
ends

Job2 
ends

Job3 
ends

Job4 
ends

All jobs are executing
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)Proportional sharing: enforce per-

job metadata rate reservations, while 
assigning leftover rate when available

✓Maximum metadata limit is respected, eliminating burstiness 
✓Each reservation of metadata is respected 
✓Leftover rate is assigned to jobs whenever available 

Executes 5 minutes longer than Baseline

Accumulated backlog!

Long periods of over-provisioning 
(resources assigned but not used)
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Evaluation
Metadata-aggressive jobs

System configuration and workload
• Maximum metadata rate is set to 220 KOps/s 
• New job is added every 3 minutes 
• Baseline execution time is 36 minutes (per job) 
• Jobs execute with different loads {15%,20%,20%,45%}

Volatile and bursty workload 
Peaks reaching over 600 KOps/s
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✓Maximum metadata limit is respected, eliminating burstiness 
✓Each reservation of metadata is respected 
✓Unused I/O resources are reassigned, preventing over-provisioning 
✓All jobs finish under the same time as Baseline

PSFA: enforce per-job metadata rate 
reservations based on the actual I/O usage
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Summary
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• Survey and classification of SDS systems 
• Systematization of knowledge and taxonomy of existing SDS solutions 

• Uncovers open research challenges in the field 

• PAIO, a novel SDS system that enables building complex I/O optimizations 
• Decoupled from the targeted system 

• Perform coordinated control decisions over shared resources 

• Programmable and adaptable 

• Data plane stages built with PAIO 
• Reimplement complex I/O optimizations that achieve similar performance as system-specific ones 

• New optimizations that address unsolved challenges present in modern I/O infrastructures 

• Currently working with leading HPC centers in the integration of PAIO and PADLL in production
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