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ABSTRACT

We presentKeigo, a concurrency- and workload-aware storage mid-
dleware that enhances the performance of log-structured merge
key-value stores (LSM KVS) when they are deployed on a hierar-
chy of storage devices. The key observation behind Keigo is that
there is no one-size-fits-all placement of data across the storage
hierarchy that optimizes for all workloads. Hence, to leverage the
benefits of combining different storage devices, Keigo places files
across different devices based on their parallelism, I/O bandwidth,
and capacity. We introduce three techniques – concurrency-aware
data placement, persistent read-only caching, and context-based I/O
differentiation. Keigo is portable across different LSMs, is adaptable
to dynamic workloads, and does not require extensive profiling.
Our system enables established production KVS such as RocksDB,
LevelDB, and Speedb to benefit from heterogeneous storage setups.

We evaluateKeigo using synthetic and realistic workloads, show-
ing that it improves the throughput of production-grade LSMs up
to 4× for write- and 18× for read-heavy workloads when compared
to general-purpose storage systems and specialized LSM KVS.
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1 INTRODUCTION

Log-structured merge-tree (LSM) key-values stores (KVS), such as
RocksDB [36], LevelDB [18], and Speedb [43], have become a funda-
mental storage building block for a variety of data-intensive appli-
cations, including databases [3, 12, 33, 37], caching systems [6, 34],
file systems [1, 2], and analytics engines [8, 16, 30]. Their wide
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adoption is driven by their natural fit for write-heavy workloads.
They buffer writes in main memory, flush them as sorted files to
storage, and merge (compact) files across multiple levels of increas-
ing capacities [30, 38]. However, the amount of data stored in these
KVS is growing exponentially (in the order of hundreds of GiBs to
TiBs), raising performance concerns as many applications require
high throughput and low tail latency [5, 28].

To overcome this challenge, prior work proposes heterogeneous
storage hierarchies combining the performance of emerging non-
volatile byte-addressable technologies (e.g., 3D XPoint [20], PCM
[24]) with the storage capacity of traditional block-addressable de-
vices (e.g., NVMe SSD, SATA SSD). These solutions are provided
as general-purpose hierarchical storage systems [26, 29, 39, 45, 53],
serving as back-end to different applications (including LSM KVS),
or as specialized KVS purposely built for heterogeneous storage [9,
40, 44, 50]. In this paper, we classify storage devices into perfor-
mance devices and capacity devices. Performance devices offer high
performance but reduced storage space (e.g., NVMM), while capac-
ity devices offer larger and cheaper storage alternative (e.g., NVMe
SSD, SATA SSD). Existing systems typically prioritize placing as
much of the LSM structure as possible in the performance device,
starting with the performance-sensitive components of the LSM,
i.e., the commit log (C𝑙𝑜𝑔) and top levels of the LSM tree (L0 and L1),
followed by filling any leftover space with data from other levels.
The remaining levels of the LSM are placed on the capacity device.

However, we show that placing LSM components across complex
and heterogeneous storage hierarchies solely based on the I/O band-
width and capacity of devices leads to degraded performance. To
understand how the use of different storage devices impacts the
performance of LSM-based KVS, and as our first contribution, we
conduct an experimental study combining NVMM, NVMe SSD, and
SATA SSD devices, where we report the following key findings
(§3). First, under write-heavy workloads, placing as many LSM
components as possible on the performance device is actually detri-
mental, degrading throughput up to 35% when compared to placing
a smaller subset of data items. This phenomenon is caused by the
increased write concurrency placed on the performance device, stem-
ming from foreground writes to C𝑙𝑜𝑔 , flushing in-memory data to
L0, and multiple parallel compactions occurring over different lev-
els of the LSM tree. Second, since storage devices scale better for
concurrent reads, placing as many components in the performance
device is beneficial for read-intensive workloads. This means that
there is no winning placement strategy that simultaneously fits the
requirements of read and write workloads.

https://doi.org/10.14778/3746405.3746414
https://github.com/dsrhaslab/keigo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3746405.3746414


Motivated by these findings, as our second contribution, we
propose Keigo, a concurrency- and workload-aware storage mid-
dleware that accelerates the performance of LSM-based KVS for
both read- and write-intensive workloads. The novelty of Keigo
lies in how it carefully places each KVS component across the hier-
archy of storage devices by consolidating the inherent properties
of LSMs with the characteristics of each device, including device-
level parallelism, I/O bandwidth, and storage capacity. Keigo can be
used with multiple LSM KVS to provide a better placement of LSM
components over the storage hierarchy. It is adaptable to changing
read:write ratios and skew, and only needs minimal device profiling
to create an initial data placement scheme.

Keigo introduces three techniques. To optimize write workflows,
the LSM levels placed in the performance device are not only de-
termined by the device I/O bandwidth and capacity but also by
the number of concurrent writers that can work in parallel (§4.2).
This means that under write-heavy workloads, Keigo stores just
a small subset of files of the KVS (i.e., C𝑙𝑜𝑔 and lower levels of the
LSM tree) on the faster device, reducing write contention. Second,
for read-heavy workloads, Keigo introduces a per-device persis-
tent read-only cache that continuously tracks and copies hot KVS
files from slower to faster storage devices, maximizing the hit ratio
on the upper levels of the hierarchy (§4.3). Third, for easy com-
patibility with different LSM KVS, we use context propagation
techniques [31, 32]. We expose a POSIX-like interface where sys-
tem calls propagate the internal KVS operation that started a given
POSIX request (e.g., C𝑙𝑜𝑔 , flush, compactions) to Keigo, which uses
this information to make efficient placement decisions (§4.4).

As our third contribution, we validate the performance of Keigo
through a comprehensive experimental evaluation, using both syn-
thetic (i.e., YCSB benchmark [13]) and production workloads from
Meta [7] and Nutanix [28]. We demonstrate that Keigo can enhance
a range of LSM KVS by adding it to three popular systems with
less than 100 LoC: RocksDB, LevelDB, and Speedb. Further, we
show that Keigo improves LSM KVS performance in two storage
hierarchies, composed of DRAM-NVMM-NVMe and DRAM-NVMe-
SATA SSDs. We compare Keigo against general-purpose storage
systems, namely ext4 and OpenCAS [39], and state-of-the-art LSMs
designed for heterogeneous storage devices, namely BushStore [44]
and PrismDB [40]. Results show that Keigo outperforms all sys-
tems across all testing scenarios. Compared to general-purpose
storage systems, Keigo improves RocksDB throughput up to 4×
and 12× under write-heavy and read-heavy workloads, respectively.
As for the specialized LSM-based KVS, Keigo improves RocksDB
throughput up to 1.6× for write-heavy workloads and up to 18× for
read-heavy workloads. Moreover, for Meta and Nutanix production
workloads, Keigo improves the next best system by 1.15× and 1.4×,
respectively. Finally, Keigo enhances the performance of Speedb
and LevelDB’s baselines by up to 8.85× and 5.76×.

2 BACKGROUND

This section provides background on devices that make up current
storage hierarchies and discusses classic strategies to manage them.
Further, it provides background on the organization of LSM KVS.

2.1 Heterogeneous storage management

Data centers use heterogeneous storage hierarchies composed of
different storage devices, each offering trade-offs of performance,
capacity, and cost. Emerging NVMM devices (e.g., 3D XPoint [20],
PCM [24]) enable byte-addressable persistent storage with perfor-
mance closer to that of DRAM. Ultra-low latency NVMe SSDs (e.g.,
Z-NAND [11]) deliver 𝜇s-scale latencies with larger capacity than
NVMM, while traditional block-addressable devices (e.g., SATA SSD,
HDD) provide a denser and cheaper alternative.

To manage a heterogeneous storage hierarchy, systems mainly
follow two strategies: caching and tiering. For simplicity, we assume
a two-tier hierarchy, made of a performance device that is faster,
smaller, and expensive (NVMM), and a capacity device that pro-
vides cheaper and large capacity storage (NVMe SSD). Our design,
however, can be used for multi-tiered storage hierarchies (§4).
Caching. In caching, the performance device is used as a persis-
tent cache to accelerate the capacity device [29, 39, 45]. Hot data
resides in the performance device, ensuring low latency and high
throughput under skewed read-heavy workloads. On cache misses,
the capacity device serves the requests. The item placement is de-
termined by an eviction policy (e.g., LRU, LFU). Depending on the
writing policy (e.g., write-back), the performance device can absorb
write operations, flushing dirty data upon explicit synchronization.
Tiering. In tiering, data items are partitioned across devices accord-
ing to a specific placement scheme, which is often driven by the
items’ popularity, size, consistency guarantees, andmore [26, 40, 53].
Contrary to caching, items only reside in one of the devices and are
not constantly promoted/evicted to/from the performance device.

2.2 Heterogeneous storage in LSM

LSM overview. Log-structured merge tree (LSM) key-value stores
(KVS), such as RocksDB [36], LevelDB [18], and Cassandra [27],
are widely adopted storage systems that are optimized for write-
intensive workloads [30, 38]. Write operations are absorbed by
a memory component (C𝑚 or memtable) that when is full, it is
flushed to persistent storage in one large sequential I/O operation.
The flushed C𝑚 is then merged by background threads in a tree-like
structure maintained in persistent storage (C𝑑𝑖𝑠𝑘 ). C𝑑𝑖𝑠𝑘 contains
multiple levels of increasing sizes (L0, L1, ..., L𝑁 ), where each level
contains multiple immutable sorted files, called SSTs. This merging
operation is called compaction. LSM KVS can run several concurrent
compactions using dedicated background threads, in addition to the
foreground load. To avoid losing data held in C𝑚 , writes are backed
up in a write-ahead log (C𝑙𝑜𝑔) that also resides in persistent storage.
To improve read performance, data items may be temporarily held
in an in-memory region called block cache. Foreground reads first
access C𝑚 , followed by the block cache, followed by the SST files.

With this multi-level structure, LSMs are a natural fit for lever-
aging storage hierarchies. So far, heterogeneous storage in LSMs
has been tackled through two main approaches.
Using general-purpose tiered storage systems. A commonly
used approach is to use general-purpose hierarchical storage sys-
tems (e.g., OpenCAS [39], Ziggurat [53], P2Cache [29]), which usu-
ally reside at the kernel and do not require POSIX-compliant ap-
plications to be modified to obtain performance gains. The storage



system determines which device services each I/O request based
on the data access pattern (e.g., write followed by fsync [29, 45],
small vs. large writes [53, 54]). However, while these systems are
designed to handle a wide range of applications, they are agnostic
of LSM I/O logic, treating all requests in the same way regardless of
their origin or priority. For example, while compactions at different
levels exhibit similar access patterns — sequentially read SST files
from disk, merge sort them in memory, and sequentially write new
SST files to disk — they incur different performance costs [5, 52].
Building new LSMs from the ground-up. Alternatively, prior
work proposes building new LSM KVS for heterogeneous storage.
These new designs consider the trade-offs of each storage device
with careful placement of the LSM components [9, 10, 44], employ
new compaction schemes compliant with the storage hierarchy [40,
50], and redesign the write operation flow [9, 23]. However, such
systems are difficult to adopt in practice, as LSMs are typically core
components in large pipelines. A significant implementation effort
is required to replace existing LSMs with such alternatives. This
problem becomes further accentuated when new storage devices
are released, deprecating the previous optimizations.
Keigo provides a middle-ground between these approaches. By
offering a middleware tailored for LSM KVS, Keigo is aware of the
I/O flows and priorities unique to LSMs, leveraging this information
when deciding the placement of different components. Moreover,
its design is flexible: it can be used by various LSM KVS and can be
adapted to heterogeneous storage hierarchies of different depths.

3 ISSUES WITH HETEROGENEOUS STORAGE

FOR LSM

We conduct an experimental study to understand how hierarchies of
different storage devices impact the performance of LSM KVS. We
consider hierarchies combining byte-addressable and block-based
storage devices. Our observations complement previous studies that
explore idiosyncrasies of individual storage devices [17, 19, 21, 46,
48], by pinpointing their impact in LSM-based KVS.
Hardware and OS configurations. We run the experiments in a
server with two 18-core Intel Xeon processors, 192 GiB of memory,
a 128 GiB Intel Optane DCPMM (AppDirect mode), a 1.6 TiB Dell
PM1725b NVMe SSD, and a 480 GiB Intel S4610 SATA SSD, using
Ubuntu Server 20.04 with kernel 5.4.0. We restrict the main memory
to 16 GiB using Linux control groups to ensure 1) the storage and
memory configurations of the server form a hierarchy and 2) that
most of the requests are submitted to persistent storage.
LSM KVS configuration. The experiments were conducted over
RocksDB configured with two C𝑚 of 128 MiB, a thread pool of four
threads for internal operations (including a flushing thread), and a
1 GiB block cache. These configurations correspond to production
settings at Nutanix [5] and follow RocksDB tuning guidelines [35].
We evaluate RocksDB with 8 client threads using write-intensive
(YCSB A, 1:1 r:w ratio) and read-only (YCSB C) workloads with a
uniform key distribution. Before each experiment, RocksDB was
pre-loaded with 50M key-value pairs (1KB value).
Storage setups. The experiments were conducted over the fol-
lowing storage configurations: 1) ext4 corresponds to an ext4 file
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Figure 1: Performance of NVMM, NVMe SSD, and SATA SSD

storage devices for FIO write and read workloads with in-

creasing number of threads (1 to 64, x-axis). Vertical lines

mark the maximum performance achieved by each device.

system mounted over the NVMe or SATA SSDs; 2) ext4-DAX corre-
sponds to NVMM backed by an ext4 file system with DAX enabled
to perform direct I/O; 3) we implemented a custom backend that
combines NVMM (backed by a PMDK driver [22]) and NVMe SSD
(ext4 file system). The first two setups show storage systems com-
monly used in production, while the latter demonstrates a storage
hierarchy adopted by prior work [29, 40, 44, 44, 45, 50].

3.1 Device-level parallelism

Before exploring the performance of LSM under heterogeneous
storage, we first show how each storage device performs when
exposed to different workloads and concurrency levels. We con-
ducted experiments using the fio benchmark with sequential read
and write workloads (sync I/O engine) under 4 KiB blocks with
increasing worker threads (1 to 64). Each worker operates over a
distinct device region to avoid overlapping working sets. We report
the mean result over 5 runs, with less than 5% standard deviation.

Figure 1 depicts the throughput of the NVMM, NVMe SSD, and
SATA SSD devices. Storage devices have different degrees of paral-
lelism. For write workloads, NVMM reaches its peak performance
under 4 threads (500 kops/s), while NVMe SSD scales up to 16
threads. NVMe SSD devices are highly parallel, containing multiple
I/O channels connected to independent flash dies. While the SATA
SSD achieves the highest parallelism level, it experiences the lowest
performance due to its limited interface bandwidth and architec-
ture [21]. Beyond 4 workers, NVMM’s performance decreases up to
2.6× (188 kops/s under 64 threads). As observed in [19, 48], the rea-
son behind NVMM’s poor scalability is caused by contention in the
XPBuffer (i.e., increased evictions and write backs to the memory
media) and the integrated memory controller (i.e., limited queue
capacity when multiple cores target a single DIMM). Consequently,
under severe write contention, the NVMe SSD achieves similar or bet-
ter performance than NVMM — under 16, 32, and 64 threads, the
NVMM achieves 226 kops/s, 194 kops/s, and 188 kops/s, while the
NVMe SSD achieves 235 kops/s, 210 kops/s, and 210 kops/s, respec-
tively. For read workloads, all storage devices showcase a higher
parallelism level. Specifically, NVMM achieves its maximum per-
formance under 32 threads, while block-based storage devices can
scale up to 64 threads. Contrary to write workloads, NVMM read
performance is limited by the number of physical NUMA cores [48].
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nents across devices under mixed and read-only workloads.

Takeaway 1. Due to the characteristics of each storage device,
device I/O bandwidth should not serve as the delimiting factor
for managing a heterogeneous storage hierarchy. Devices must
be carefully combined to realize the full potential of the storage
hierarchy in terms of performance, parallelism, and capacity.

3.2 Placement of LSM components

We now explore the impact of placing different LSM components
(excluding C𝑚) across the storage hierarchy. To this end, we com-
pare RocksDB throughput under ext4 with NVMe and SATA SSDs,
ext4-DAX, and the custom storage backend configured with differ-
ent placement schemes. In the latter, we start by placing C𝑙𝑜𝑔 on
NVMM and keep the remainder components on the NVMe SSD
(H1). We then incrementally place more components on NVMM—
C𝑙𝑜𝑔+L0 (H2), C𝑙𝑜𝑔+L0:L1 (H3), ... — until the full dataset is serviced
from this device. Figure 2 depicts the performance of RocksDB
under write- and read-intensive workloads for all storage setups.
Write-intensive workloads. Placing all LSM components in the
faster storage device (ext4-DAX and H5 setups) increases RocksDB
throughput up to 1.4× and 3.7×when compared to ext4 with NVMe
and SATA SSDs, respectively. Also, the custom storage backend
improves throughput up to 20% over ext4-DAX due to its PMDK
driver, which stores and accesses data items (both I/O and metadata)
directly from user-space. However, maybe surprisingly, we observe
that placing the entire dataset on NVMM is actually detrimental,
degrading throughput up to 35% when compared to just placing a
small subset of data items (H4). The reason behind this performance
decrease is a direct result of the increased write concurrency placed
over NVMM, which exceeds the maximum parallelism supported
by the device (§3.1). Placing more components on NVMM results in
more workers concurrently writing to it, which are originated from
foreground writes to C𝑙𝑜𝑔 , flushing C𝑚 to L0, and multiple parallel
compactions occurring over different levels of the LSM tree.
Read-intensive workloads. Contrary to write-intensive work-
loads, RocksDB performance improves with the number of compo-
nents placed on NVMM. Specifically, ext4-DAX and H5 surpass ext4
throughput by up to 2.3×. This is because while NVMM’s writes
do not scale well, reads can scale up to the number of physical
cores (§3.1). As such, placing the entire dataset in the faster tier of
the storage hierarchy is beneficial for read-intensive workloads.

Takeaway 2. Tiering is the recommended strategy to improve
write performance in LSM-based KVS. LSM components closer

100

140

180

220

260

0 150 300


ro
ug

hp
ut

(k
op

s/
s)

Compaction threads:

H2:Clog+ L0 H3:Clog+ L0:L1 H4:Clog+ L0:L2 H5:Clog+ L0:LN

1 2 4 8 16

100

140

180

220

260

0 150 300 100

140

180

220

260

0 150 300 100

140

180

220

260

0 150 300

Figure 3: RocksDB performance over time (in seconds) under

different placement schemes with increasing number of con-

current compactions. The caption of each plot depicts the

components placed on NVMM.

to C𝑚 must be placed on faster storage tiers. Not only because
these handle the critical write data path, but also because placing
more LSM levels degrades overall performance due to the poor
write concurrency of emerging storage devices.

Takeaway 3. Caching is the recommended strategy to improve
read performance in LSM-based KVS. Leveraging the fact that
emerging storage devices offer excellent read bandwidth and
scalability, one should strive to maximize their hit ratio.

3.3 Concurrent compactions

We now analyze the performance impact of increasing the number
of writers and LSM components stored across the storage hierarchy.
We fixed the number of client (8) and flushing (1) threads but varied
the number of compaction threads (1 to 16). Figure 3 shows the
throughput over time across all configurations under YCSB A.

When a small amount of data is persisted in NVMM (namely,
H2 and H3), RocksDB’s performance is suboptimal since a large
amount of requests are serviced by the NVMe SSD. Increasing the
number of threads does not improve performance since the problem
lies in the placement scheme. Similarly to §3.2, RocksDB achieves
the best throughput performance under the H4 configuration, when
using 4 compaction threads. With a low number of threads (i.e., up
to 2), RocksDB experiences write stalls, which occur when flushes
and low-level compactions are slow or on hold [5, 52]. On the other
hand, too many compaction threads increases the number of writers
contending the NVMM. These effect becomes further accentuated
when all components reside on the faster tier (H5).

Takeaway 4. The KVS performance is directly impacted by the
placement of components across the hierarchy and the number
of writers. This means that there is no single placement scheme
that fits all workloads and system configurations.

3.4 Popularity of LSM levels

We now investigate how different data distributions impact the
storage hierarchy. We analyze the accesses over time across the
LSM (levels and block cache) under different distributions, including
zipfian 0.99 (high skew), zipfian 0.80 (medium skew), and uniform.
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Read workflows. Figure 4 depicts the number of foreground reads
observed at each LSM level for a read-only workload. We observe
that L3 is the most accessed level. While L0 to L2 have a combined
size of approximately 3 GiB, L3 holds 25 GiB of the dataset. On
the other hand, even though L4 can accommodate 10× more data
than L3, it holds the older and colder portion of the dataset [30, 51].
We also observe that the block cache places an important role in
highly skewed workloads, being able to service a large amount of
reads, but its impact fades as the distribution becomes less skewed.
This means that for low skewed read-intensive workloads, levels
higher than L2 should be stored in the faster tier as well; otherwise,
a significant portion of requests will be made over the NVMe SSD.
Write workflows. Due to the design of LSM KVS, the write data
path follows the same workflow regardless of the data distribution.
As such, components that are on the critical data path (i.e., C𝑙𝑜𝑔 , L0,
L1) should be placed on the faster tier, while the placement of other
levels must be chosen to prevent write contention.

Takeaway 5.When considering different data distributions,
there is no winning placement strategy that simultaneously fits
the requirements of read and write workflows.

4 KEIGO STORAGE MIDDLEWARE

We propose Keigo, a concurrency- and workload-aware storage
middleware that accelerates the performance of existing LSM KVS
running on a hierarchy of storage devices. Through its design,
Keigo automatically capitalizes on the strengths of the devices
and compensates for their weaknesses, all while requiring mini-
mal changes to the KVS. Following the takeaways discussed in §3,
Keigo’s design is built following five core principles.
Parallelism, bandwidth, and capacity-aware LSM placement.

Keigo realizes the full potential of the storage hierarchy by plac-
ing LSM components according to the parallelism, bandwidth, and
capacity of each storage medium.
Maximize hit ratio on faster devices. Keigo exploits the high
read bandwidth, scalability, and low latency of faster storage devices
(e.g.,NVMM), maximizing the number of requests served from them
and minimizing read latency across the hierarchy.
Automatic partitioning and tuning. To adapt to the performance
characteristics of the different storage mediums, Keigo automati-
cally manages the LSM partitioning across the hierarchy and the
concurrency of background data movements between devices.
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Figure 5: Keigo architecture. It follows a multi-tier storage

hierarchy, co-designed with the properties of LSM KVS and

the inherent characteristics of different storage devices.

Flexibility and extensibility. Keigo supports different combina-
tions of storage devices and enables system designers to implement
custom storage drivers and placement policies to comply with their
workloads and system requirements.
Low intrusiveness. Keigo requires minimal changes to LSM KVS,
minimizing the work needed to maintain and port it to new systems.

4.1 Keigo design overview

Figure 5 provides a high-level view of Keigo. The system is a user-
level middleware that sits between the LSMKVS (e.g., RocksDB, Lev-
elDB) and a hierarchy of heterogeneous storage devices. Building
on the observation that placing as many KVS files as possible on the
fastest storage tier can simultaneously improve read performance
but degrade write performance, Keigo makes placement decisions
that account for device-level parallelism. To optimize writes, Keigo
restricts placement on the faster device to only the LSM compo-
nents in the critical data path, ensuring that performance-sensitive
operations benefit from high throughput and low latency while
keeping the number of active concurrent writers within the device’s
supported parallelism. To optimize reads, Keigo asynchronously
caches hot SST files on faster tiers of the hierarchy, lowering read
latency without interfering with write performance.

Keigo is organized as follows. At its core, a file namespace com-
ponent provides a logical-to-physical mapping of KVS files (e.g.,
SST, C𝑙𝑜𝑔) to their corresponding location, transparently abstracting
a hierarchy of storage devices into a single logical one. The hotness
of each file is continuously tracked through a caching and migration
manager, which decides when to move data across devices either to
improve the KVS performance (caching) or for space management



(migrations). To enable combining different types of storage devices,
Keigo exposes a driver interface that allows implementing custom
I/O logic for each device, while supporting specialized interfaces
and I/O protocols (e.g., PMDK [22], io_uring). In this paper, we
assume a storage hierarchy made of byte-addressable (NVMM) and
block-addressable storage devices (NVMe and SATA SSDs), acting
as performance and capacity devices, respectively. DRAM plays a
minimal role in Keigo’s design, as most LSM KVS already per-
form internal memory management (e.g., block cache, memtable)
to optimize operations in the critical data path. To automate the
partitioning of files across the hierarchy, Keigo integrates an offline
concurrency profiler that generates placement schemes based on
the performance and parallelism of the storage devices in the hier-
archy, as well as the KVS workload. In sum, Keigo is responsible
for managing how files are efficiently stored across a hierarchy of
devices, while other responsibilities, such as thread management
and compaction scheduling, remain under the control of the KVS.
Keigo is driven by three main techniques:
1) Concurrency-aware data placement (§4.2). On-disk LSM com-
ponents are split across the storage hierarchy based on two place-
ment policies, driven simultaneously by the properties of the LSM
and by the parallelism, I/O bandwidth, and capacity of each stor-
age device. With performance-aware placement, LSM components
whose operations are in the critical data path (C𝑙𝑜𝑔 and levels closer
to C𝑚) and whose number of concurrent writers does not exceed
the device’s supported parallelism are placed on the faster storage
device (/dev1). With capacity-aware placement, the bottom LSM-
tree levels, which accommodate the colder majority of data and is
where non-critical work is conducted, are placed on the remainder
devices (/dev2, ..., /devN).
2) Persistent, read-only caching (§4.3). Read-heavy workloads
can experience low performance if a substantial amount of requests
are handled by slower devices in the hierarchy. Keigo integrates
a per-device persistent read-only cache that tracks and copies hot
SST files from slower to faster storage devices, maximizing the hit
ratio on the upper levels of the hierarchy and improving the KVS
performance under low skewed, read-intensive workloads.1

3) Context-based I/O differentiation (§4.4). To minimize the in-
trusiveness of porting existing KVS, Keigo exposes a POSIX-like
interface where system calls are passed with an additional context
field. The context defines the internal KVS operation that originated
a given POSIX request (e.g., flush, C𝑙𝑜𝑔 , L𝑁 compaction), and is used
to determine the device that will handle it. This is achieved by using
context propagation [31, 32], enabling KVS-level information to be
propagated to Keigo with minor code changes.
Operation flow. Figure 5 illustrates how Keigo handles KVS oper-
ations. KVS files that contain clients’ data are created when writing
to C𝑙𝑜𝑔 , flushing C𝑚 to disk, and during compactions. These op-
erations are submitted to Keigo via extended open() calls that
complement the standard POSIX interface with the context that
triggered such operation at the KVS level, whether it is a log write,
flush, or compaction (and respective levels involved) (➊) (§4.4).
Based on this context, Keigo creates the file in the corresponding
storage device according to the placement scheme (➏), generated
1The current Keigo prototype caches full SST files, but it is possible to further refine
the policies for block-level caching.

offline by the concurrency profiler (§4.2). To transparently support
POSIX I/O to the KVS across a storage hierarchy,Keigo’s file names-
pace maintains a logical-to-physical mapping of each file, linking
the SST file with its physical location, original file identifier (i.e., file
descriptor, memory address), and logical file descriptor returned to
the KVS, which is used in subsequent I/O operations to that file such
as read(), write(), and close(). Writes to the critical data path
(➍), coming from C𝑙𝑜𝑔 , flush, and low-level compactions, are han-
dled by the faster storage device (/dev1), while foreground reads
are served from the tier where the file currently resides, whether
cached or placed by the policy (➋). Files may be moved between
devices during compactions involving levels placed at different
tiers (§4.2); when caching hot files to faster devices in the hierarchy
(§4.3); and during migrations triggered for space management (➌)
(§4.2). When a compaction completes, unlinked files are removed
from the caching/migration manager and the file namespace (➎).

4.2 Optimizing writes

Keigo integrates the takeaways from §3, by providing two place-
ment policies to optimize writes.
Performance-aware data placement. The performance placement
policy, applied to the fastest device in the storage hierarchy (/dev1),
manages the LSM components that directly impact the performance
perceived by clients. The policy follows two key rules: 1) identify the
components that lie in the critical data path that must be placed on
the faster tier to minimize latency, and 2) determine the additional
components that can be placed without exceeding the device’s
supported write parallelism and capacity.
1) Performance-critical components are placed in the faster tier. Keigo
places C𝑙𝑜𝑔 and lower levels of the LSM (L0 and L1) on the faster
tier. Our reasoning is threefold. First, writes to C𝑙𝑜𝑔 need to be
fast since they incur significant overhead to the critical data path,
especially when the OS page cache is bypassed (e.g., O_DIRECT)
or when crash-consistency guarantees are desirable. Second, LSM
workloads have strong temporal locality, where the popularity of
objects fades over time [7, 51]. This means that the most accessed
keys are stored in the most recent SST files, which are placed at
the lower LSM levels. Third, background tasks that involve C𝑚

and the lower levels of the tree are prone to write stalls, especially
under write-heavy workloads. Stalls occur when flushes cannot
proceed, either because flushes and low-level compactions are slow
or on hold, resulting in degraded performance [5]. While placing
these components on the faster tier does not avoid write stalls, their
duration and performance degradation are hampered [52].
2) Ensure the maximum device-level parallelism is not exceeded. I/O
bandwidth cannot serve as the sole determining factor for placing
files in the faster tier, as the KVS performance under write-intensive
workloads is significantly impacted by the number of active writers
in the system, especially on NVMM devices (§3). This is particu-
larly detrimental for higher levels of the LSM, which perform larger
compactions and contend the device for longer periods [5]. As such,
Keigo ensures that levels placed in the faster device are not solely
determined by its bandwidth and space but also by the degree of
parallelism among writer threads (i.e., writes to C𝑙𝑜𝑔 , flushes, paral-
lel compactions). This means that under write-heavy workloads, by
selectively storing a small subset of KVS files (e.g., C𝑙𝑜𝑔 + L0 to L2,



with a combined size of ≈3 GiB (§3.4)) on the faster device, Keigo
reduces write contention and improves performance.

Keigo implements these rules through an offline concurrency
profiler that generates a placement scheme with the LSM levels that
must be placed in the faster storage tier. The profiling process is
made in three phases, as depicted in Figure 5. First, it profiles the
performance of each storage device, using the fio benchmarking
tool [4], under read and write workloads with increasing number of
threads until performance degradation is observed. This allows de-
termining the maximum parallelism supported by each device (§3.1).
Second, it profiles the average number of concurrent writes that
occur at different levels of the LSM during write-heavy workloads,
using the YCSB benchmark [13] (➁). We used YCSB as it generates
workloads representative of those evaluated in §5. Nevertheless,
system designers can use alternative configurations and workloads
that more accurately reflect their production environments. Based
on these results, the profiler generates a scheme with the LSM lev-
els whose cumulative concurrency demand does not exceed the
supported write parallelism of the faster tier (➂). Similarly to prior
work [9, 40, 42, 50], Keigo assumes the internal state of the LSM
remains stable over time (e.g., size of LSM levels, number of active
threads). While our experiments validate the effectiveness of this
approach, there may be scenarios where the data placement should
change over time (e.g., shifting access patterns, varying number of
writers). We leave the use of online profiling for future work.
Capacity-aware data placement. In the capacity placement policy,
applied to the remainder devices (/dev2, ..., /devN), LSM levels are
placed in each tier according to their available storage space. Our
reasoning is that as new objects are inserted or updated in the KVS,
older values are pushed down the stack and stored at the bottom
LSM levels, thus accommodating the main bulk and colder portion
of the dataset. To ensure sufficient capacity for incoming files, SST
files are migrated across devices following an LRU eviction scheme.
Moreover, due to the size of the bottom LSM levels (i.e., hundreds
of GBs to TBs), levels can be stored across multiple tiers.
Data movements across the hierarchy. In Keigo, data opera-
tions between devices arise from two sources: compactions between
LSM levels placed in different devices (managed by the KVS) and
explicit operations performed by Keigo for performance and space
management, including caching (§4.3) and migrations. For com-
pactions, Keigo performs a standard logical-to-physical mapping
mechanism, translating the POSIX calls submitted by the KVS into
their corresponding device-specific accesses – namely, reads SST
files from the targeted levels, writes the newly generated ones in
the corresponding location, and removes obsolete SST files.

For migrations, SST files are managed with an LRU eviction
policy based on file access frequency. Candidate SST files for evic-
tion are placed in a dedicated queue and moved by a thread pool
once an upper-bound threshold is exceeded. This threshold ensures
migrations are only triggered when device utilization surpasses a
certain limit, avoiding premature eviction of SST files and minimiz-
ing inter-device traffic. To avoid migrating SST files from upper
LSM levels, particularly during atypical bursts to older key-value
pairs, the eviction policy weighs the level at which SSTs respect
to, prioritizing the migration of files from deeper (i.e., colder) LSM
levels. Further, to prevent the write concurrency problem observed

in §3, the caching and migration manager component tracks the
number of active writers in each device (i.e., compactions, caching,
ongoing migrations) through atomic counters and dynamically ad-
justs migration parallelism to stay within the device’s supported
write parallelism. Finally, to reserve space for incoming SST files,
Keigo forces migration when free space falls below a lower-bound
threshold.2 While this could, in theory, temporarily exceed the de-
vice’s supported parallelism, we have not observed this in practice;
nevertheless, since capacity devices store the non-critical portion
of the dataset, we do not expect any noticeable impact.

4.3 Optimizing reads

Under read-heavy workloads exhibiting medium skew or uniform
distributions (§3.4), most requests are made over the slower devices
in the hierarchy (/dev2, ..., /devN). While placing more levels on
/dev1 improves the performance of read-dominated workloads, it
would severely impact write-heavy ones (§3.2). Keigo overcomes
this challenge by reserving space at each storage device to per-
sistently cache frequently accessed SST files from devices at the
lower levels of the hierarchy. For example, hot SST files from de-
vice /devY (e.g., /dev2) are temporarily cached on /devY-1 (e.g.,
/dev1) as read-only copies, while the original files remain persisted
in /devY. Cached files are created in read-only mode, as in tradi-
tional LSM KVS (e.g., RocksDB) files become immutable after being
fully written [14]. Files are removed from the cache when the origi-
nal file is deleted (e.g., compactions) or when space is needed for
hotter SST files. Keigo’ caching process is applied to all devices in
the hierarchy, except for the last one, and addresses the following
questions: 1) which files should be cached; 2) when should files be
cached; and 3) how should the actual process of caching be made
in the presence of workloads with different read-write proportions.
1) File temperature profiling.Keigo determineswhich files should
be copied to the persistent cache by tracking SST access frequency.
Access counters are maintained at the file namespace and are up-
dated by the KVS foreground threads (during reads that miss the
block cache). To prevent caching stale data due to shifting access
patterns or compactions, Keigo applies an aging factor to each
SST file, decreasing the access counter in an exponential back-off
manner each time a file is copied.
2) Hit ratio maximization. Keigo determines when to cache SST
files by monitoring the hit ratio of foreground reads in the storage
device that hosts the cache (/devY-1). To achieve this, a dedicated
background thread continuously computes the hit ratio of /devY-1
and triggers a copy when the value is below a certain threshold.
When triggered, Keigo selects the most frequently accessed SST file
from /devY and places it in an internal queue to be copied. The mon-
itoring granularity and hit ratio threshold are user-configurable.
3) Concurrency-aware copying. Keigo uses a dedicated thread
pool to cache files in parallel. However, this operation must be done
carefully to avoid exacerbating the write concurrency problem
observed in §3. As such, Keigo tracks the number of active writers
on the storage device that hosts the cache (e.g., /dev1) — namely,
C𝑙𝑜𝑔 , flush, compactions, and caching — and dynamically adjusts
the number of caching threads to ensure the total writers do not
2In our experiments, the upper- and lower-bound thresholds were set to 5% and 2% of
the device capacity, respectively, but these values are user-configurable parameters.



exceed the device’s maximum parallelism level. The number of
writers decreases when the corresponding background tasks finish.

Furthermore, in write-only workloads, the number of caching
threads may temporarily drop to zero due to frequent flushes and
compactions. This behavior is not detrimental, as caching is unnec-
essary in the absence of read operations.

4.4 Context-based I/O differentiation

General-purpose storage systems are agnostic of the LSM’s internal
I/O logic, treating all requests in the same manner regardless of
their priority and performance cost. On the other hand, building
specialized LSM KVS from the ground up to support heteroge-
neous storage devices requires significant implementation efforts,
which are continuously repeated upon the release of new storage
hardware. Keigo strikes a balance between the two approaches by
propagating the origin of KVS operations (e.g., C𝑙𝑜𝑔 , flush, L0 to
L1 compaction) to the storage, enabling the same level of control
and performance as LSM-specific optimizations while imposing
minimal code changes. It combines ideas from context propagation,
a commonly used technique that enables a system to forward addi-
tional request information along its execution path [31, 32, 49], and
applies them to determine which device should handle each request.
The process for differentiating requests in Keigo is twofold.
Instrumentation. First, Keigo needs minimal instrumentation on
the data path of the LSM foreground and background work, includ-
ing C𝑙𝑜𝑔 , flushes, and compactions at different levels. Whenever
these operations are triggered, a tag (or context) associated with
the corresponding operation type (e.g., log, flush, comp_l0_l1) is
registered at a variable residing in the local address space of each
thread through the OS’s thread-local storage mechanism [15].
Execution. During execution, when a new file is created, an ex-
tended open() system call is sent to Keigo with the original argu-
ments of POSIX open() and the context that originated the request.
This context determines the device that will persist the file, ac-
cording to the data placement scheme. Subsequent file requests
(e.g., read(), write(), close()) do not need to pass the operation
context, as they can access the file through Keigo’s file namespace.

4.5 Implementation

We implemented a prototype of Keigo in 4K LoC in C++. Keigo is
provided as a user-level library, extending 25 POSIX calls, such as
open(), read(), pwrite(), etc; we found that supporting this set
of calls is sufficient to enable Keigo over LSM-based KVS (§5.4).
Storage drivers.We implemented two storage drivers: a NVMM
driver for managing byte-addressable and a POSIX driver for block-
based storage devices. The former is implemented using Intel PMDK.
POSIX operations are converted into their corresponding memory-
mapped version: reads are serviced via memcpy(), and writes with
pmem_memcpy() using ntstore instructions to avoid polluting the
processor cache. Keigo provides similar consistency guarantees as
POSIX, making data durable upon explicit synchronization through
pmem_flush() and pmem_drain() instructions. For the POSIX dri-
ver, requests are submitted following standard POSIX semantics.
In-memory structures. The file namespace is implemented in
a concurrent hashmap that maps logical file descriptors to the

metadata objects thatmaintain information about the actual file (e.g.,
original file descriptor, pathname). Entries are atomically updated
at file creation/removal (i.e., flush, compactions, C𝑙𝑜𝑔) and when
moving files across devices (i.e., trivial moves, caching, migrations).
Persistent caches. Each persistent cache uses a dedicated thread
pool for background copying of SST files and separate threads
for monitoring the hit ratio of each storage device. The hit ratio
threshold is defined by a fixed, configurable parameter. On file
copying, Keigo prefetches targeted SST files to the OS page cache
using fadvise() and readahead(). After its completion, it hints
the OS to evict the pages that hold prefetched data.
Porting LSM-based KVS.We integrated Keigowith three popular
LSM KVS, namely RocksDB [36] (57 LoC), Speedb [43] (81 LoC), and
LevelDB [18] (40 LoC), which required updating the thread-local
variables for context propagation and replacing POSIX system calls
with those supported by Keigo.

4.6 Discussion

Impact of device-level parallelism. Device-level parallelism is a
fundamental characteristic that universally affects storage devices.
While its effects are especially pronounced in NVMM due to its
inherent read-write asymmetry, our findings demonstrated that
block-addressable devices like NVMe and SATA SSDs are also im-
pacted (§3.1), resulting in suboptimal performance under high write
concurrency. In §5.5, we demonstrate how Keigo improves LSM
KVS performance even in block-addressable storage hierarchies.
Performance under multiple NVMM devices. While our ex-
periments focus on using a single NVMM, the findings and core
principles of Keigo extend to setups with multiple devices. Pre-
vious studies demonstrate that increasing the number of devices
enhances overall write bandwidth but does not eliminate the con-
currency limit inherent to each device [25, 48], highlighting the
importance of Keigo’s concurrency-aware placement scheme.
Internal metadata consistency. Keigo’s current implementation
is fault tolerant. Upon a crash, Keigo reconstructs its namespace by
scanning the files stored in each device, which allows redirecting
operations to the correct location. Cached files may be present
during recovery but do not affect Keigo’s correctness, as they are
removed during normal operation. We defer the improvement of
crash-recovery mechanisms for Keigo’s metadata to future work.

5 EVALUATION

Our evaluation sets out to answer the following questions:

• How does Keigo perform under varying dataset sizes (§5.1)?
• How does Keigo handle different levels of concurrency (§5.2)?
• How does Keigo perform under production workloads (§5.3)?
• Can Keigo improve the performance of other LSM KVS (§5.4)?
• What is the performance breakdown of the different techniques

implemented in Keigo (§5.5)?

Hardware and OS configurations.We used the same hardware
and OS configurations as in §3, with the exception of the SATA
SSD, which was replaced by two 480 GiB SATA SSDs configured
with RAID-0. Unless stated otherwise, experiments were conducted
using the NVMM and NVMe SSD devices.
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(a) Relative throughput of all systems, with respect to ext4, over a 50 GiB dataset under zipf99 and uniform data distributions.
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(b) Relative throughput of all systems, with respect to ext4, over a 200 GiB dataset under zipf99 and uniform data distributions.
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(c) Relative throughput of all systems, with respect to ext4, over a 400 GiB dataset under zipf99 and uniform data distributions.

Figure 6: Relative throughput of ext4, OpenCAS, BushStore, PrismDB, and Keigo for YCSB workloads (A to F) under distinct data

distributions and dataset sizes. The absolute throughput value (in kops/s) of ext4 is shown above the bar.

Baselines. We evaluate and compare Keigo over two groups of
systems: general-purpose storage systems, namely ext4 and Open-
CAS [39]; and state-of-the-art LSMs designed for heterogeneous stor-
age devices, namely BushStore [44] and PrismDB [40]. ext4 corre-
sponds to an ext4 file system mounted over NVMe SSD. OpenCAS
is an in-kernel Linux module that provides transparent and per-
sistent caching to applications. We configured OpenCAS to use
the NVMe SSD as main storage (capacity device) and NVMM as
persistent cache following write-back policy – writes are submitted
to the cache and acknowledged to the application before being
written to the NVMe; periodically, these writes are flushed to the
capacity device. BushStore is a LSM KVS that organizes L0 and
L1 in a B+Tree structure and stores them in NVMM, while the re-
mainder levels are stored on NVMe SSD. PrismDB is a LSM KVS
that stores hot data items (organized in slab files) and the C𝑙𝑜𝑔 on
NVMM, and cold data items (in SST files) on NVMe. The system
also uses a multi-tiered compaction scheme to minimize I/O stalls.
As for Keigo, unless stated otherwise, NVMM handles C𝑙𝑜𝑔 and L0
to L2, while the remainder levels are placed on NVMe SSD, as gen-
erated by the offline concurrency profiler. Leftover NVMM space
(≈100 GiB) is allocated to the persistent cache. The thread pools for
managing caching and migrations are configured with 16 threads.
Experimental setup. The ext4, OpenCAS, and Keigo experiments
were conducted over RocksDB configured with two C𝑚 of 128 MiB
each, a 1 GiB block cache, and a thread pool of 4 threads for internal
operations, including 1 flushing thread. For optimal performance,
BushStore was set with 64 threads for background work, and Pris-
mDB with 1 background thread per client. All experiments (except
§5.2) use 8 client threads. The data loading phase is single-threaded
using a uniform distribution with 16B keys and 1024B values.

5.1 Varying dataset sizes

To understand how each system manages data across the storage
hierarchy, we compare their performance under different dataset
sizes, which can fit entirely (50 GiB) or only partially (200 GiB and
400 GiB) in the faster storage device (i.e., NVMM). Experiments
were conducted using YCSB workloads A to F. Figures 6a, 6b, and
6c depict the relative throughput of all systems with respect to ext4
for 50 GiB, 200 GiB, and 400 GiB datasets, respectively.
Write-intensive workloads. Under write-intensive workloads
(A, F), Keigo outperforms all systems. For datasets that do not
fit entirely on NVMM, Keigo improves throughput up to 2.2×,
1.7×, 1.6×, and 1.4× over ext4, OpenCAS, BushStore, and PrismDB.
The reason behind this performance difference is that in ext4, all
requests are handled by the NVMe SSD since it is the only device
that can accommodate all datasets; OpenCAS caches requests in
NVMM but the choice of which items should be cached is agnostic
to the KVS, not considering their level or priority. The closest
competitors are BushStore and PrismDB, which similarly to Keigo,
handle the critical data path (i.e., C𝑙𝑜𝑔 , L0, L1) on NVMM. Keigo’s
performance difference becomes more pronounced as the dataset
size increases. In Keigo, L2 reads and writes are serviced by NVMM,
while other solutions use the NVMe SSD.
Read-intensive workloads. Under read-intensive workloads (B,
C, D), Keigo significantly outperforms all systems, especially under
datasets that do not fit on NVMM. Keigo show performance im-
provements of up to 10×, 1.7×, 18×, and 15× over ext4, OpenCAS,
BushStore, and PrismDB, a direct result of the persistent caching
mechanism (§4.3). In these experiments, ext4 and OpenCAS cache
hot data items in the OS page cache and NVMM, being particu-
larly noticeable under the zipf99 distribution. For small datasets,
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increasing number of foreground and background threads.

OpenCAS demonstrates similar performance to Keigo, as it caches
the entire dataset on NVMM. On the other hand, BushStore and
PrismDB experience poor performance due to their inability to
cache hot data items either on NVMM or the OS page cache, lead-
ing to the majority of requests being serviced by NVMe SSD. Under
scan-intensive workloads (E), Keigo improves performance up to
4× over general-purpose systems and 16× over the LSM KVS.
Direct I/O. In some production environments, applications use
direct I/O to access their data, bypassing the OS page cache. As such,
we assess the performance of each system when the OS page cache
is disabled (O_DIRECT) under a 200 GiB dataset, depicted in Figure 7.
Keigo, BushStore, and PrismDB demonstrate similar performance
as with the OS page cache enabled, as they store the critical data
path on NVMM with synchronous I/O to reduce CPU utilization by
eliminating copies from the OS cache to the application buffer. For
YCSB A, Keigo overcomes ext4 and OpenCAS up to 4×, as write
operations are now directly submitted to the NVMe SSD. For YCSB
C, Keigo overcomes ext4 by up to 12×; OpenCAS exhibits similar
performance as with the OS page cache enabled, since hot data
items are eventually promoted to NVMM.

5.2 Varying concurrency levels

Figure 8 depicts the performance of all systems under varying con-
currency levels. Experiments were conducted for write-intensive
(A) and read-intensive (C) workloads using a 200 GiB dataset under
a zipf80 distribution with an increasing number of foreground and
background threads, ranging from 1 to 16. For the background ex-
periments, all systems were configured with 8 client threads. We
were unable to configure PrismDB for 1 to 4 background threads
due to its requirement of having at least 1 thread per client.
Foreground concurrency. Under the YCSB A workload, ext4,
OpenCAS, and Keigo scale with the number of foreground workers.
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Figure 9: Performance of ext4, OpenCAS, PrismDB, and Keigo

under Meta and Nutanix production workloads.

For a small number of workers (1 to 4), BushStore exhibits the best
performance due to its B+Tree design under L0 and L1 LSM levels.
Interestingly, contrary to the other systems, both BushStore and
PrismDB performance peaks at 8 client threads, and experience
a performance decrease of 47% and 34% under 16 threads. The
reasons behind this are that: for BushStore, since NVMM only
stores the lower levels of the tree, the majority of requests are
serviced by the NVMe SSD device; for PrismDB, since it requires at
least 1 background thread per client, the number of active writers
in the system far exceeds the NVMM’s limit (i.e., 4), causing the
write concurrency problem observed in §3. For the read-intensive
workload, we draw similar conclusions as in §5.1.
Background concurrency. Keigo was configured with different
placement schemes generated by the concurrency profiler. Specif-
ically, with up to 2 background threads, Keigo stored in NVMM
all files up to L3, while the other levels were placed on NVMe due
to space constraints; for 8 and 16 threads, Keigo stored in NVMM
all files up to L1, as the device’s supported write parallelism would
be exceeded beyond that level. Under YCSB A, for a small number
of threads, since ext4, OpenCAS, and Keigo use native RocksDB,
all systems experience write stalls, as discussed in §3.3. Beyond 4
threads, Keigo achieves the best performance across all systems. As
for YCSB C, since it is a read-only workload (absent of compactions),
all systems show stable performance with increasing number of
workers. Interestingly, while Keigo is configured with different
placement schemes, its performance remains stable due to the per-
sistent caching mechanism, achieving a performance increase of 4×,
1.25×, 18×, and 7.5× over ext4, OpenCAS, BushStore, and PrismDB.

5.3 Production workloads

We now evaluate how each system performs under production
workloads from Meta [7] and Nutanix [28]. Figure 9 captures the
throughput and tail latency of all systems.
Meta workloads.We use the prefix_dist production workload from
Meta [7], a read-dominated workload that combines read, write,
and scan operations at a ratio of 83:14:3, uses varying key-value
pair sizes, and exhibits realistic key hotness patterns. Experiments
ran over a 50M key-value pairs dataset using 8 client threads. Due
to its placement scheme and persistent cache, Keigo outperforms
all baselines, increasing throughput by 1.2× over ext4 and 1.15×
over OpenCAS. We were unable to run BushStore and PrismDB
under this workload, as they crash due to the varying key sizes.
Nutanix workloads. The Nutanix workload is a write-intensive
workload that combines read, write, and scan operations at a ratio
of 40:58:2. The items requested during the execution also vary
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Figure 10: Throughput of Speedb and LevelDB with Keigo.

in size, ranging from 100B to 4 KiB, with a median size of 400B.
Experiments were conducted over a 500M key-value pairs dataset.
Keigo outperforms all baselines, achieving a throughput increase
of up to 1.6× over other systems. Similarly to the Meta workloads,
we were unable to successfully run BushStore.

5.4 Portability

We now demonstrate the portability of Keigo by integrating it with
Speedb [43] (81 LoC) and LevelDB [18] (40 LoC). Figure 10 compares
the performance of the base systems configured with the ext4 setup
and their corresponding Keigo-enabled versions. Experiments were
conducted in a 200 GiB dataset with write- (A), read- (C), and scan-
intensive (E) workloads under different data distributions. Speedb
experiments were conducted using 8 client threads, while LevelDB’s
were sequential due to the lack of concurrency support.

Keigo improves the performance of both systems across all
workloads due to its data placement and persistent caching op-
timizations. Speedb performance is improved up to 8× for read-
and scan-intensive workloads and up to 1.33× for write-intensive
workloads. As for LevelDB, Keigo shows a performance increase
of up to 2.4× for YCSB A, 2.89× for YCSB C, and 5.76× for YCSB E.

5.5 Sensitivity analysis

We now evaluate the performance of distinct features of Keigo.
Block-addressable storage hierarchy. We first study the perfor-
mance of Keigo under a block-addressable storage hierarchy. The
experiments were conducted for YCSB A and C workloads using
a 200 GiB dataset with 16 client threads across three setups: ext4
mounted on the SATA SSD, ext4 mounted on the NVMe SSD, and
Keigo using both NVMe and SATA SSDs. For Keigo, the NVMe
SSD is limited to 100 GiB to simulate a scenario where the dataset
exceeds the capacity of the faster tier. As generated by the offline
concurrency profiler, the NVMe SSD handles𝐶𝑙𝑜𝑔 and L0 to L3, while
the remainder levels are placed on the SATA SSD. Leftover NVMe
space (≈70 GiB) is allocated to the persistent cache. To minimize
caching effects, the OS page cache was disabled for all systems.

Figure 11 depicts the performance of all setups over different
data distributions. Under an NVMe-SATA SSD hierarchy, Keigo
improves RocksDB performance by up to 2.2× for write-heavy
workloads and 1.9× for read-heavy workloads compared to storing
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Figure 11: Performance of Keigo under a block-addressable

storage hierarchy for YCSB A and C.

all LSM components on ext4 backed by the SATA SSD. When com-
pared to a scenario where all LSM components reside on the NVMe
SSD device, Keigo achieves similar performance while placing only
a small portion of the LSM (≈30 GiB, 15%) in the faster, and more
expensive, tier. These results highlight Keigo’s adaptability to dif-
ferent storage hierarchies and reinforce the broader applicability of
its core principles (§4) beyond NVMM-based storage hierarchies.
Multiple storage tiers.We now analyze the performance of Keigo
under different storage hierarchies: a single tier composed of a
NVMM; a tier using NVMM and NVMe SSD devices; and the combi-
nation of NVMM, NVMe SSD, and SATA SSD. Adding more devices
to the hierarchy allows the system to handle larger datasets. For
these experiments, NVMe capacity was limited to 800 GiB, and the
NVMM and NVMe’s caches were configured to 80 GiB and 160 GiB,
respectively. Figure 12 depicts the performance of the different
combinations for write- (A) and read-intensive (C) workloads over
increasing dataset sizes, ranging from 50 GiB to 1.6 TiB. All storage
hierarchies achieve the best performance for smaller datasets, as the
majority of requests are serviced by the faster tiers. Interestingly,
the NVMM + NVMe SSD and NVMM + NVMe SSD + SATA SSD hi-
erarchies show similar performance under the same dataset, never
exceeding a relative difference of 5%. This is due to Keigo’s caching
and migration mechanisms, which ensure sustained performance
even when adding slower storage devices to the hierarchy.
Impact of the persistent cache. We now analyze the perfor-
mance impact imposed by Keigo’s persistent cache. We ran a read-
intensive workload (C) for a 400 GiB dataset stored over a storage
hierarchy composed of NVMM, NVMe SSD, and SATA SSD.We con-
sidered three setups: when caching is disabled, when NVMM cache
is enabled, and when both caches (NVMM and NVMe SSD) are
enabled. The storage capacity of each device was limited to 100 GiB,
200 GiB, and 400 GiB, respectively. The NVMM and NVMe SSD’s
caches were configured to 70 GiB and 50 GiB, respectively. Due to
space constraints, the plots for these experiments are omitted.

When caches are disabled, Keigo’s performance ranges between
126 kops/s and 815 kops/s for uniform and zipf99 distributions.
When the NVMM cache is enabled, its throughput increases by
4.5× for uniform and 1.7× for zipf99. Results also show that, un-
der this dataset, the NVMe SSD cache has a negligible impact on
performance since most requests are serviced by the NVMM cache,
either due to accesses over the hot SST files originally placed on
NVMM or the hot files copied from the NVMe SSD device.
Caching and migration agressiveness. As discussed in §4.2
and §4.3, Keigo automatically controls the number of threads mi-
grating and caching data across devices. Figure 13 shows the per-
formance of such mechanism for YCSB A and C workloads with an
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800 GiB dataset. We compare three different setups: Caching man-
ually changes the number of caching threads from 1 to 16, while
letting Keigo choose the number of migration threads; Migration
varies the number of migration threads and lets Keigo define the
number of caching threads; and Caching+migration lets Keigo au-
tomatically control the number of both thread types.

For write-intensive workloads, increasing the number of caching
threads decreases the KVS throughput, as parallelizing the caching
process (combined with ongoing writes from C𝑙𝑜𝑔 , flush, and com-
pactions) causes the number of active writers to exceed NVMM’s
concurrent writers limit. For read-intensive workloads, since there
are no active writers in the system, Keigo scales up to 4 caching
threads. As for migrations, since these are performed between the
NVMe and SATA SSDs, the performance improves up to 16 threads.
When both caching and migrations operate with the automatic
thread control mechanism, Keigo achieves the best performance
across all experiments. This is because Keigo continuously moni-
tors the number of active writers in each storage device and auto-
matically adjusts the number of concurrent caching and migrations.

6 RELATEDWORK

This section describes prior work and places our work in context.
General-purpose hierarchical storage. OpenCAS [39] is a gene-
ric block-layer caching mechanism that enables using a fast device
as a cache of a slower device. P2Cache [29], FirstResponder [41], and
SPFS [45] are in-kernel cachingmechanisms that enhance legacy file
systems by using NVMM to absorb frequent writes. Orthus [47] in-
troduces a non-hierarchical caching strategy that redirects requests
based on device load. Strata [26], Ziggurat [53], and TPFS [54] are
file systems that tier data across DRAM, NVMM, and SSD according
to the applications’ access patterns and consistency requirements.
These systems, however, are agnostic of applications’ internal I/O
logic. For LSM KVS, this means that requests with different priori-
ties and storage performance costs are treated in the same manner
across the storage hierarchy, impacting the KVS’ end performance
as observed in §3 and §5. In contrast, Keigo is an LSM-aware mid-
dleware that places LSM components in the storage device that best
suits their workload patterns.
KVS with hierarchical storage support. Mutant [51] places SST
files based on their popularity over cloud-based storage while en-
forcing storage cost SLOs. SpanDB [9] uses high-performance SSDs
via SPDK to store the C𝑙𝑜𝑔 and lower levels of the LSM tree. Pris-
mDB [40] proposes a multi-tier compaction scheme that spawns
across a hierarchy of heterogeneous storage devices. MatrixKV [50]
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for caching and migrations.

proposes a new matrix-like data structure that manages L0 and is
placed on NVMM. BushStore [44] replaces traditional SSTs with
B+Trees, placing L0 and L1 in byte-addressable storage, and the rest
of the LSM in a block-based device. WaLSM [10] actively profiles
data freshness and access frequency to accurately migrate cold data
from NVMM to SSD. Prism [42] is a KVS specifically designed for
DRAM-NVMM-SSD storage hierarchies, that follows a key-value
separation model, where keys are placed on NVMM and values
are placed on SSD (first absorbed by NVMM to minimize write
latency and later migrated to SSD). Prism introduces techniques
that minimize thread synchronization over “wide” storage hierar-
chies composed of multiple similar devices operating in parallel.
Replacing LSMs used in production with these systems is not trivial,
posing significant implementation efforts. Keigo is independent of
specific LSM implementations or storage devices, enabling porta-
bility and performance improvements with minimal code changes.

Unlike previous works, Keigo is the first solution to fully lever-
age heterogeneous storage hierarchies by optimizing LSM I/O work-
flows for each device’s parallelism, bandwidth, and capacity. By
doing so, Keigo significantly improves the performance of widely
used LSM-based KVS systems under read and write workloads.

7 CONCLUSION

We presented Keigo, a novel storage middleware that accelerates
the performance of LSM KVS using a heterogeneous storage hi-
erarchy. Contrary to prior work, Keigo consolidates the inherent
properties of LSMwith the parallelism, I/O bandwidth, and capacity
of different storage devices. Our extensive evaluation shows signifi-
cant performance improvements over general-purpose systems and
specialized KVS with native support for heterogeneous storage.
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