One Does Not Simply Cache: A Study on
Distributed Caches for Al Training in HPC

Workshop Paper

André Ferreira, Gongalo Sousa, Janki Bhimani®, Raju Rangaswami*, Amit Ruhela*, John
Cazes*, Ricardo Macedo, Cldudia Brito, Jodo Paulo

INESC TEC & University of Minho “Florida International University *TACC & UTAustin

Abstract—This paper presents the first study on cache solutions
for Distributed Deep Learning training in HPC centers. We
categorize these according to their intrusiveness, design, and data
placement strategies. Further, through an empirical evaluation
on real supercomputers (Deucalion and Vista), we measure the
impact of caching and checkpointing data into different storage
sources (i.e., parallel file system, local storage, and remote nodes).

Results show that choosing the optimal caching design is
dependent on the targeted infrastructure, the storage resources
used for caching data, and the network protocols. Based on these,
we outline design trade-offs and propose future directions for
co-designing cache systems within HPC infrastructures to more
effectively support Distributed Deep Learning workloads.

Index Terms—Distributed Deep Learning, Distributed Caches,
Storage 1/0, High-Performance Computing, Parallel File System

I. INTRODUCTION

Machine Learning (ML) is a powerful tool to solve cru-
cial problems in distinct areas such as image classification,
natural language processing, and speech recognition. Its wide
adoption, along with the demand for more accurate and
generalizable models, has driven the growth of both model
and dataset sizes, especially in Deep Learning (DL) and Large
Language Models (LLMs) [1].

With this increase in scale and complexity, Distributed
Deep Learning (DDL) has emerged as an alternative solu-
tion to better leverage multiple compute nodes, parallelizing
the computation and I/O required to train large models. In
parallel, given the high demand for specialized hardware
(e.g., GPUs), a large number of nodes, and storage capacity,
High-Performance Computing (HPC) centers have been the
preferred choice for running these training workloads [2].

However, HPC centers typically follow a shared storage
architecture, meaning multiple user workloads store and fetch
data from a shared Parallel File System (PFS). In the specific
case of DDL training workflows, multiple ML instances,
deployed on different compute nodes, simultaneously read the
dataset and save (i.e., checkpointing) their model states to the
PFS. These concurrent accesses create significant contention at
the PFS, degrading its performance and potentially rendering
the file system and the supercomputer unavailable [3].

Challenges and Related Work. Previous research work
has been addressing the PFS contention generated by large-
scale DDL training workloads, by leveraging both volatile and

non-volatile (i.e., local disk devices) memory available at each
compute node [4,5]. These resources are used for caching
parts of the ML datasets, reducing the number of accesses
made to the shared file system when training Al models.
However, existing solutions differ in multiple aspects,
namely: i) on their intrusiveness to user workflows, ii) on the
choice of which data to cache; iii) how data is distributed
across local resources of each node; and iv) even on the
cache eviction policies. These differences, which are not trivial
to reason about, have not been explored in previous litera-
ture, which is mostly centered around surveying parallel I/O
workloads and different I/O optimizations for ML workloads
in HPC [1,6]. Further, they depend on assumptions made
regarding DDL workloads and the infrastructure they utilize.
Thus, the main contribution of this paper is a consolidation
of the literature, complemented with empirical experiments, on
the key characteristics of caching solutions for DDL workloads
running at HPC supercomputers. Our paper is the first to:

i) make a systematization of key characteristics found in
current research work, including intrusiveness, data place-
ment, distribution and granularity, and eviction policies.

ii) complement the literature review with empirical results
quantifying how the characteristics of real HPC infras-
tructures, namely the Deucalion and Vista supercomput-
ers, impact the design of caching for DDL.

II. BACKGROUND

Modern HPC centers are composed of multiple compute
nodes, which are organized within racks and different sub-
systems, depending on their characteristics (i.e., CPU nodes
or GPU nodes). For instance, Deucalion [7] is currently
composed of 2132 CPU nodes and 33 GPU nodes, while
systems like Vista [8] have 256 CPU and 608 GPU nodes.
Other systems, focused on efficiently supporting Al training
workloads, like ABCI [9], are equipped with 766 GPU nodes.

Compute nodes are typically interconnected by fast network
fabrics like Infiniband [7-9]. The same type of fabric is usually
used to remotely store and retrieve data from the PFS. The
latter is composed of multiple storage and metadata nodes and
optimized for large and sequential I/O data access patterns.
Storage-wise, many modern HPC centers equip their compute
nodes with local disk space private to each node.



A. ML Data Flow

1

]

1

1

]

:

! 1 N —
! N —
1

]

:

i M Reading

1

1

B Writing

Fig. 1: DDL training data flow in HPC.

In the context of DDL training, the data flows mainly in
two distinct directions: when reading the dataset and when
writing model checkpoints, as shown in Figure 1. In order
to train accurate models, large amounts of training data (i.e.,
labeled data samples stored across multiple files) are read and
processed by the model, leading to read-intensive workloads.
Briefly, the dataset is stored initially on the PFS (Fig. 1-(D),
with each training epoch accessing all dataset samples (i.e.,
reading all files from the PFS) into each node’s host memory
(Fig. 1-@) and then moving it to the computation device’s
memory (e.g., GPU) for processing (Fig. 1-3).

To improve model accuracy, the entire dataset is processed
exactly once per epoch in a randomized order, known as
dataset shuffling. This results in a random file access pattern,
leading to multiple accesses to the PFS metadata nodes,
generating I/O contention and degrading overall performance
for all user jobs accessing the shared file system [3].

At the end of each epoch, to prevent loss of training progress
due to the failure of one or multiple nodes, models’ states are
checkpointed to persistent storage, usually the PFS. Specifi-
cally, the model state is copied from the computation device’s
memory into the host’s memory, i.e., GPU to CPU memory
(Fig. 1-@), then it is sent to the PFS (Fig. 1-(®)) and stored
in it (Fig. 1-©). Notably, for complex models with a large
number of parameters, such as LLMs, model checkpointing
results in periodically transferring large amounts of data to
the PFS. Previous studies show that checkpointing complex
models can saturate up to 40% of the PFS bandwidth, leading
again to severe contention for other workloads [10].

III. SYSTEMATIZATION OF CACHES FOR DDL

Fig. 2 presents a generic overview of the basic workflow
of current distributed caching solutions for DDL training. In a
DDL workflow, a full copy of the dataset samples resides at the
PFS. To minimize PFS access, a distributed cache, composed
of the volatile memory and/or local storage resources of nodes
participating in the training workload, is used to cache the
entire set of dataset samples, or a subset of these if the
available aggregated space is insufficient.

When a node asks for a given sample (Fig. 2-(1)), the local
cache instance of that specific node is checked (Fig. 2-). If

Cached Samples

=

NLS. RAM
Local Cache @

Instance
f- - - - -

____________________________

Local Cache
Instance

Fig. 2: Data flow of cache solutions for DDL.

the sample is not cached locally, then it is requested from a
neighbor node participating in the same DLL workload (Fig.
2-(®). If the sample is not cached at any node, it is requested
from the PFS (Fig. 2-@)).

The cache can be populated when the DDL workload begins
or when a miss occurs and samples are fetched from the PFS.
The choice of which compute nodes cache a given sample
is based on a distribution strategy (e.g., consistent hashing,
static partitioning) [4, 11]. The choice of what samples to evict
(Fig. 2-@) when the cache is full and a new item needs to be
promoted is based on an eviction policy.

Some HPC centers, such as ABCI [9], enable users to
deploy general-purpose distributed file systems (e.g., BeeGFS)
on-demand over the local storage of multiple compute nodes
[12]. While these solutions spare I/O requests to the PFS
they have several drawbacks. First, the dataset must be loaded
from the PFS to the on-demand file system and must fully
fit on the latter. Second, these are generic systems agnostic to
DDL’s I/O patterns (e.g., random accesses to large sets of small
files), suffering from performance contention due to metadata
operations at scale, especially for I/O bound models [13].

To overcome the aforementioned drawbacks, distinct spe-
cialized cache solutions have emerged over the past few years.
Table I organizes these according to key characteristics.

Intrusiveness. Diesel [14] offers a specialized file system,
mounted over the local disks of compute nodes and built
specifically for the small-file random I/O patterns of Al
workloads. As it exports a generic file system interface, it
is compatible with commonly used AI frameworks such as
PyTorch [20] or TensorFlow [21].

HDF5 Cache Vol [15] improves on the HDF5 I/O library
data format [22] to support caching. While this solution does



System Intrusiveness Cache Resources | Eviction Policy ]S)ai\mples Samples
acement | Retrieval
DIESEL+ [14] File System API | NLS Eviction Static Prefetch
HDFS5 Cache Vol [15] | Code Changes In-Memory Static Best Effort | File
SHADE [16] Code Changes In-Memory Data Substitution, Eviction | Best Effort | Prefetch
DeepFetch [17] Code Changes NLS Eviction Static Prefetch
Quiver [18] Code Changes NLS Data Substitution Static File
NoPFS [19] Code Changes Multi-Tier Eviction Static Prefetch
DistMonarch [11] LD_PRELOAD NLS Static Best Effort | File
FanStore [5] LD_PRELOAD NLS Static Static File
HVAC [4] LD_PRELOAD NLS Eviction Static File Data

TABLE I: Analysis of state-of-the-art distributed cache systems regarding: intrusiveness, cache resources, eviction policies,

samples placement and data granularity.

not require changing Al frameworks, it requires using the
specific file format supported by the library. Other works, such
as SHADE [16], DeepFetch [17], Quiver [18], and NoPFS
[19], need direct changes over the frameworks’ code, e.g., in
their data loaders, to know how samples are read or even to
intercept and redirect these requests to other cached samples.

Alternatively, FanStore [5], DistMonarch [11], and
HVAC [4] transparently intercept and manipulate I/O requests
done by AI frameworks by using LD_PRELOAD. This
approach requires no direct changes to the framework’s code.

Cache resources. Choosing which local compute node re-
sources are used to cache samples typically changes according
to the details of the HPC infrastructure. Some solutions build
their caches exclusively with volatile RAM memory from
compute nodes, as these may not include local disks [15, 16].

Others take advantage of the node’s local storage (NLS) to
cache data, which has the benefit of freeing volatile memory
for other processing needs of the ML workflow (e.g., copying
data from CPU to GPU, checkpointing) [4,5,11, 14,17, 18].
NoPFS [19] considers a range of storage tiers, with different
transfer speeds and storage capacities, combining both volatile
memory and local storage at each node.

Eviction Policies. Typically, when a requested sample is
not present in the cache, the sample is fetched from the PFS
and then placed into the cache to avoid further cache misses
in the next training epochs. However, when the cache is full,
the eviction strategy to be adopted varies.

Some works use a static cache, not evicting or promoting
any samples once the cache is full [5, 11, 15]. The rationale
is justified by the random access pattern of DDL workloads
across all dataset samples under each training epoch. Evicting
samples to promote others that, in the next training epoch,
may be requested later than the evicted ones will lead to
multiple misses and to extra accesses to the PFS. Contrarily,
other works use standard eviction policies, such as Random
Sample Eviction, without introducing any specific policies
geared towards DDL [4, 14, 16,17, 19].

There are also solutions that, instead of fetching missed
samples from the PFS, serve the DDL with other cached sam-
ples [16, 18]. This substitution promotes cache hits and avoids
accessing the PFS, but it changes the unbiased randomness
required by the training model for its accuracy guarantees.

SHADE [16] combines sample eviction with substitution to
reduce the accuracy penalty of the latter. It caches the samples
that are more important for the training process in each epoch
and uses them when there are cache misses.

Samples placement. In a distributed caching solution, each
node is expected to store a portion of the full dataset samples.
The distribution of samples across nodes can be done statically,
for instance, by calculating a hash digest of the sample’s
file name or content [4, 5, 14,17, 18]. NoPFS follows a static
pattern, based on the access pattern of files, which is known
in advance by instrumenting the Al framework’s code [19].

Other solutions opt instead for a best-effort approach, where
each node will cache missed samples that are not in its local
cache nor in the cache of its neighboring nodes [11, 15, 16].
When a given node caches a new sample, it notifies its
neighbors about this. We call this a best-effort approach since
there is a time window where multiple nodes may end up
caching the same sample. Given the random-access I/O nature
of DDL workloads, this is, however, a rare event.

Samples retrieval. When a given sample is requested from
neighboring nodes, solutions like HVAC explicitly request
only that single sample [4]. Other approaches leverage larger
file formats that store multiple samples (e.g., TFRecords).
This provides an opportunity to request the full file’s content,
optimizing network bandwidth, as the samples contained in it
are expected to be accessed in the near future [5, 11, 15, 18].
To further optimize the use of the high-performance network
bandwidth in HPC centers, some solutions prefetch more than
one file per request [14, 16,17, 19].

IV. EXPERIMENTAL STUDY

Our systematization of existing solutions shows that these
take distinct approaches regarding the resources used for
caching data, the policies for cache eviction, how samples
are placed across nodes, and how these are exchanged across
neighboring nodes. Next, we complement this information
with a set of experiments, done using real supercomputers,
to better understand the trade-offs of some of these decisions
while pointing out open research directions.

A. Sample retrieval latency

Current solutions require reading samples from multiple
sources, such as the PFS, local node disks, and in-memory or



o
™
o
®

L
[}
e
[}

|
b n

(b) Vista 1 MiB

L
N
e
)

Request Latency (ms)
o
SN

o
<)

Request Latency (ms)
o
N

1
(a) Deucalion 1 MiB

|

|
L
(¢) Deucalion 100 MiBs

Fig. 3: Read Results; B PFS-R; B NLS-R; @ NRM-R (TCP);
®m NRM-R (Verbs); @ NRS-R (TCP); @ NRS-R (Verbs)

o
[=}

oo
o
o]
o

[2]
o
[2]
o

e
\

mm WS

N
o

Request Latency (ms)
N
o

Request Latency (ms)
N
o

o

N
o

o

(d) Vista 100 MiBs

on-disk caches of neighboring nodes. However, these works do
not quantify the impact on I/O latency of using such sources,
especially under different hardware configurations.
Workload. We set up a synthetic workload that mimics the
I/O read patterns of training the ILSVRC2017 subset of the
ImageNet dataset [23]. Our stress workload issues 10,000 read
requests, each targeting a random file from a set of 1000 files.
We vary the size of files being read between 1 MiB and 100
MiBs. The latter is similar to the typical size of a TFRecord
(e.g., an average Imagenet TFRecord is sized 119 MiBs), while
the former allows assessing solutions that do not perform full-
file prefetching by requesting a smaller data size.
Experimental setup. Experiments were conducted on the
Deucalion Supercomputer [7], on the normal-al00-40
partition, and the Vista Supercomputer [8], on the gg partition.
Deucalion is composed of 2165 compute nodes, with a local
SATA SSD disk, and shares a PFS backend of size 10 PiB.
Vista comprises 256 CPU and 608 accelerator-based compute
nodes, each with a local NVMe SSD, and sharing a 1 TiB PFS
per user. Both systems use Lustre as their shared file system.
Scenarios. Based on the different data sources, we defined
four scenarios: PFS-R: reading from the PFS; NLS-R: reading
from a node’s local disk; NRM-R: fetching files from a remote
node’s in-memory cache; NRS-R: fetching files from a remote
node’s local disk. Scenarios NRM-R and NRS-R were assessed
using two different transfer protocol APIs for data transmission
between nodes, TCP and Verbs for Infiniband, the latter using
the Mercury RPC Framework [24]. These are represented in
Fig. 3 as NRS-R (TCP) and NRS-R (Verbs), respectively.

In general, reading data from the node’s local disk presents
the smallest average latency, ranging from 0.08ms to 0.11ms
for 1 MiB and 6.8ms to 17.2ms for 100 MiBs, across the two
supercomputers. There is an exception, namely with the Vista
supercomputer, and for 100 MiBs files, where reading data
from the PFS is similar to doing so from the node’s local disk

(i.e., an average latency of ~7.1ms and ~6.9ms respectively).

With TCP over InfiniBand, rather than using the InfiniBand-
specific API, I/O network latency between nodes is signifi-
cantly higher. In the NRS-R scenario, the increase is up to
2.2x for Deucalion and 3.2x for Vista, making read accesses to
the PFS faster, which uses InfiniBand through more optimized
APIs. On Deucalion, the change in the network transfer API
allows the NRM-R scenario to outperform fetching data from
the PFS. Verbs is an API specific to the Infiniband network
hardware, taking full advantage of its low latency and high
throughput.

Reading data from remote nodes’ memory is faster than
reading from the PFS, up to 80% for Deucalion and 32%
for Vista, and introduces less variability. Reading from a
remote node’s disk also reduces variability, but has slightly
higher average latency. Even if PFSs are optimized for large
read payloads, their performance highly depends on other
workloads running simultaneously and using shared storage
resources. Therefore, for larger payloads and under stable
operation, the PFS may be a better option than remote nodes.

Takeaway 1. A node reading data from its local disk
achieves lower latency and variability than when using
the PFS (up to 3.1x and 36.6x, respectively). Requesting
samples from peer disks is slower than local disks and
PFS (up to 4x higher latency), but more stable (up
to 10x lower variance) than PFS, particularly under
heavy contention. Thus, performance-aware cache designs
should stem from the trade-off between variability and
latency across all available storage tiers, rather than only
focusing on minimizing PFS accesses (as discussed in
section II).

Takeaway 2. On HPC systems, peer caching with op-
timized software and network stacks (e.g., Infiniband
Verbs) outperforms traditional TCP-based approaches,
which can have up to 7.7x higher latency. In some cases,
this overhead compromises the cache, leading to worse
overall performance than the PFS. Accordingly, general
network approaches, widely used on other data centers
such as cloud computing, are detrimental, performance-
wise, when applied in HPC environments.

B. Load Balancing

Distributed caches for DDL must implement a strategy
to distribute data across multiple nodes. The experiment de-
scribed next reproduces the behavior of a best effort place-
ment approach used by related work and discussed in Sec-
tion III [11]. We study how the strategy impacts the number
of accesses made by a DDL training workload to each node’s
local disk, neighboring nodes, and the PFS.

Workload. We train the ResNet18 image classification model
with using Tensorflow v2.8, running on 4 nodes with Data
Parallelism, a batch size of 64, and during 4 training
epochs [21, 25]. The dataset used is the ILSVRC2017 subset of



Files in | PFS NLS NLS Access by | Request

Cache Access | Access Peer Request to Peers
Node 1 261 5828 | 138172 442346 433194
Node 2 262 5901 | 139227 431572 431271
Node 3 251 5969 | 134085 409560 437844
Node 4 273 5913 | 144688 442802 423969
Total 1047 23611 | 556172 1726280 | 1726278

TABLE II: Accesses to storage sources under DDL training.

the ImageNet, containing 1024 TFRecords with 1200 samples
each and a total size of 220 GiBs [23].

Experimental setup. The experiment is conducted on Deu-
calion on the normal-al00-40 partition, using the 4
NVIDIA Ampere A100 40 GB GPUs per node and the SATA
SSD disk limited to a size of 100 GiBs. Tensorflow runs
distributed across 4 of these nodes.

Table II shows that TFRecord files are nearly equally
distributed across the disks of the 4 compute nodes. Given
the best effort placement strategy used in the experiment, 2%
of files end up replicated on the local disks of multiple nodes.

When the ResNet model is being trained, ~6k accesses are
made by each node to the PFS. Since data is only cached upon
a miss, most accesses made in the first training epoch lead to
a miss and consequently a request to the PFS. Note that the
number of I/O operations is significantly higher than that of
TFRecord files because Tensorflow issues multiple operations
per file for reading subsets of samples.

We also observe a balanced number of operations, consid-
ering the accesses made by all nodes to their local disks and
the number of accesses each node receives from its neighbors.

The number of files each node caches directly impacts the
number of times it accesses its own local disk and requests
samples from other nodes’ disk. In our specific setup, each
node caches ~256 files, occupying less than 40 GiBs, meaning
that 60 GiBs of space are wasted. This observation is similar
to other solutions using hashing schemes for data placement.

Takeaway 3. With higher numbers of compute nodes in
DDL training workloads, total storage capacity grows,
allowing the replication of dataset samples. Even with the
best-effort placement strategy, data requests to peer nodes
tend to be evenly balanced between all nodes, due to
dataset shuffling. This promotes load balancing and mini-
mizes hotspots, supporting uniform replication. Moreover,
replicating data locally maximizes node local disk usage,
enhancing throughput (Takeaway 1) and reducing network
contention during training, as each node can issue up to
3.3x more requests to peers than accesses to its local disk.

C. Model Checkpointing

DDL workflows must checkpoint the model’s state peri-
odically to guarantee quick recovery upon failures of one
or multiple nodes. Next, we study the impact of storing
checkpoint files over the PFS and across the local disk of
compute nodes.

200
150 150
100 100

50 50

Average Write Latency(ms)
Average Write Latency(ms)

0 0

(a) Deucalion (b) Vista

Fig. 4: Write Results; @ PFS-W; @ NLS-W; @ NRS-W (TCP);
@ NRS-W (Verbs);

Workload. We set up an experimental synthetic workload
that mimics the I/O write patterns of writing checkpoint files.
Namely, our stress workload issues 250 writes, each with a size
of 176 MiBs. These parameters reproduce the values found
when checkpointing the Bert model trained with 250 epochs.

The experimental setup is similar to the one used in IV-A,
while the testing scenarios are also identical but focused on
writing data to multiple storage sources. In detail, we have
three scenarios: PFS-W: writing checkpoints to the PFS; NLS-
W: writing to a node’s local disk; NRS-W: writing checkpoint
files to a remote node’s disk. The latter two scenarios were
assessed using TCP and Verbs for Infiniband network protocol
APIs. These are represented in Fig. 4 as NRS-W (TCP) and
NRS-W (Verbs) respectively.

Results show a similar performance pattern to the one
observed for read requests. Namely, writing to the local disk
exhibits the smaller latency (~84.4ms for Deucalion and
~16,4ms for Vista), followed by using the PFS (/104,8ms for
Deucalion and ~25,4ms for Vista). Using Verbs also reduces
latency when compared with the TCP protocol, up to 15% for
Deucalion and 43% for Vista. When data is written to the local
storage of remote nodes, using the Verbs protocol, it exhibits a
slightly higher latency (~117.8ms for Deucalion and ~40,9ms
for Vista) but less variability than using the PFS.

Takeaway 4. While node local storage presents the fastest
write time, using it to buffer checkpoints may not be
beneficial if the fault model considers that the full node
may crash. An interesting alternative is using the local
disk of remote nodes for replicating checkpoints, which
showed higher latency than using the PFS (up to 2.8x)
but with lower I/O variance (up to 18.7x).

V. CONCLUSION AND OPEN CHALLENGES

Current DLL cache solutions alleviate the I/O contention
experienced on the PFSs of modern supercomputers, while
improving the use of local disk resources at compute nodes.
This paper makes the first systematization of such works,
pinpointing their shared and divergent characteristics, and
opens up the path for new research challenges.
Co-designing caches for DLL with HPC infrastructures.
The latency and bandwidth of I/O operations change when
using the PFS, local node disks, or even remote nodes. Further,



these metrics may vary according to the supercomputer being
used. Therefore, one should design new cache solutions that
consider and adapt to such differences.

Leveraging leftover disk space. For large-scale (e.g., tens
to hundreds of nodes) training workloads, one can expect the
combined space of compute nodes’ local disks to significantly
surpass the size of datasets. This opens the opportunity to
replicate samples across the local disks of nodes and benefit
from faster access speed.

Buffering checkpoints. Caches for DDL do not consider
buffering model checkpoints in nodes’ local disks. Taking
advantage of these local resources can alleviate performance
contention at the PFS for large models with many parameters.
Checkpoint file placement Hybrid replication strategies that
leverage local and remote storage resources for persisting
checkpoints may be worth exploring, along with their impact
over training performance and fault-tolerance.

VI. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insight-
ful comments and feedback. This work was co-funded
by the European Regional Development Fund (ERDF)
through the NORTE 2030 Regional Programme under Por-
tugal 2030, within the scope of the project BCD.S+M,
reference 14436 (NORTE2030-FEDER-00584600), by na-
tional funds through FCT - Fundacdo para a Ciéncia
e a Tecnologia, I.P., under the support UID/50014/2023
(https://doi.org/10.54499/UID/50014/2023), and by FCCN
within the scope of the project Deucalion, with reference
2024.00014. TEST.DEUCALION. This work was also sup-
ported by funding from NSF (grants CNS-1956229, CSR-
2402328, CAREER-2338457, and CSR-2323100), as well as
generous donations from NetApp and Seagate.

REFERENCES

[1] N.Lewis, J. L. Bez, and S. Byna, “I/O in Machine Learning Applications
on HPC Systems: A 360-degree Survey,” ACM Computing Surveys,
vol. 57, no. 10, pp. 1-41, Oct. 2025.

[2] A. K. Paul, A. M. Karimi, and F. Wang, “Characterizing Machine
Learning I/O Workloads on Leadership Scale HPC Systems,” in 2021
29th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). Houston,
TX, USA: IEEE, Nov. 2021, pp. 1-8.

[3] S. A. Wright and S. A. Jarvis, “Quantifying the effects of contention
on parallel file systems,” in 2015 IEEE International Parallel and
Distributed Processing Symposium Workshop, 2015, pp. 932-940.

[4] A. Khan, A. K. Paul, C. Zimmer, S. Oral, S. Dash, S. Atchley,
and F. Wang, “Hvac: Removing I/O Bottleneck for Large-Scale Deep
Learning Applications,” in 2022 [EEE International Conference on
Cluster Computing (CLUSTER).  Heidelberg, Germany: IEEE, Sep.
2022, pp. 324-335.

[5] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski,
J. Cazes, and N. Gaffney, “FanStore: Enabling Efficient and Scalable
1/O for Distributed Deep Learning,” 2018.

[6] H. Ather, J. L. Bez, C. Wang, H. Childs, A. D. Malony, and S. Byna,
“Parallel I/O Characterization and Optimization on Large-Scale HPC
Systems: A 360-Degree Survey,” 2025.

[7]1 “Deucalion user guide,” https://docs.macc.fcen.pt/, 2025, [Online; ac-
cessed 11-07-2025].

[8] “Vista user guide,” https://docs.tacc.utexas.edu/hpc/vista/, 2025, [Online;
accessed 11-07-2025].

[9]1 “ABCI user guide,” https://docs.abci.ai/en/, 2025, [Online; accessed 11-
07-2025].

[10]

(11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language
model training on GPU clusters using megatron-LM,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY, USA:
Association for Computing Machinery, Nov. 2021, pp. 1-15. [Online].
Available: https://dl.acm.org/doi/10.1145/3458817.3476209

M. Moreira, “Otimiza¢des de armazenamento distribuido para apren-
dizagem profunda,” Master’s thesis, Universidade do Minho, 2023.
“BeeGFS,” https://www.beegfs.io/c/, 2025, [Online; accessed 11-07-
2025].

F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone,
K. Mohror, and W. Yu, “I/O Characterization and Performance Eval-
uation of BeeGFS for Deep Learning,” in Proceedings of the 48th
International Conference on Parallel Processing. Kyoto Japan: ACM,
Aug. 2019, pp. 1-10.

L. Wang, Q. Luo, and S. Yan, “DIESEL+: Accelerating Distributed Deep
Learning Tasks on Image Datasets,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 5, pp. 1173-1184, May 2022.

H. Zheng, V. Vishwanath, Q. Koziol, H. Tang, J. Ravi, J. Mainzer,
and S. Byna, “HDF5 Cache VOL.: Efficient and Scalable Parallel I/0
through Caching Data on Node-local Storage,” in 2022 22nd IEEE
International Symposium on Cluster, Cloud and Internet Computing
(CCGrid). Taormina, Italy: IEEE, May 2022.

R. I. S. Khan, A. H. Yazdani, Y. Fu, A. K. Paul, B. Ji, X. Jian,
Y. Cheng, and A. R. Butt, “{SHADE}: Enable fundamental cacheability
for distributed deep learning training,” in 2/st USENIX Conference on
File and Storage Technologies (FAST 23), 2023, pp. 135-152.

L. Kong, F. Mei, C. Zhu, W. Cheng, and L. Zeng, “DeepFetch: A Node-
Aware Greedy Fetch System for Distributed Cache of Deep Learning
Applications,” in 2024 International Conference on Networking, Archi-
tecture and Storage (NAS). Zhuhai, China: IEEE, Nov. 2024, pp. 1-8.
A. V. Kumar and M. Sivathanu, “Quiver: An informed storage cache
for deep learning,” in I8th USENIX Conference on File and Storage
Technologies (FAST 20). Santa Clara, CA: USENIX Association, Feb.
2020, pp. 283-296.

N. Dryden, R. Bohringer, T. Ben-Nun, and T. Hoefler, “Clairvoyant
prefetching for distributed machine learning 1/0,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. St. Louis Missouri: ACM, Nov. 2021, pp. 1-15.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024-8035.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the HDF5 technology suite and its applications,” in Proceed-
ings of the EDBT/ICDT 2011 Workshop on Array Databases. Uppsala
Sweden: ACM, Mar. 2011, pp. 36-47.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252, 2015.

J. Soumagne, D. Kimpe, J. Zounmevo, M. Chaarawi, Q. Koziol, A. Af-
sahi, and R. Ross, “Mercury: Enabling remote procedure call for high-
performance computing,” in 2013 IEEE International Conference on
Cluster Computing (CLUSTER), 2013, pp. 1-8.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385


https://docs.macc.fccn.pt/
https://docs.tacc.utexas.edu/hpc/vista/
https://docs.abci.ai/en/
https://dl.acm.org/doi/10.1145/3458817.3476209
https://www.beegfs.io/c/
https://www.tensorflow.org/
http://arxiv.org/abs/1512.03385

	Introduction
	Background
	ML Data Flow

	Systematization of Caches for DDL
	Experimental Study
	Sample retrieval latency
	Load Balancing
	Model Checkpointing

	Conclusion and Open Challenges
	Acknowledgments
	References

